首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 414 毫秒
1.
The tetraphosphine all‐cis‐1,2,3,4‐tetrakis(diphenylphosphinomethyl)cyclopentane (Tedicyp) in combination with [Pd(C3H5)Cl]2 affords a very efficient catalyst for the coupling of cyclopropylboronic acid with aryl bromides and aryl chlorides. Higher reactions rates were observed with aryl bromides than with aryl chlorides; however, even in the presence of 1–0.4% of catalyst, a few aryl chlorides gave the coupling products in good yields. A wide variety of substituents such as alkyl, methoxy, trifluoromethyl, acetyl, benzoyl, formyl, carboxylate, nitro, and nitrile on the aryl halides are tolerated. The coupling reaction of sterically very congested aryl bromides such as bromomesitylene or 2,4,6‐triisopropylbromobenzene also proceeds in good yields.  相似文献   

2.
All-cis-1,2,3,4-Tetrakis(diphenylphosphinomethyl)cyclopentane/[PdCl(C3H5)]2 efficiently catalyzes the Sonogashira reaction of propiolaldehyde diethyl acetal with a variety of aryl bromides and chlorides. A minor electronic effect of the substituents of the aryl bromide was observed. Similar reaction rates were observed in the presence of activated aryl bromides such as 4-trifluoromethylbromobenzene and deactivated aryl bromides such as bromoanisole. Turnover numbers up to 95,000 can be obtained for this reaction. Even aryl chlorides and heteroarylbromides or chlorides have been successfully alkynylated with this catalyst. Moreover, a wide variety of substituents on the aryl halide such as fluoro, trifluoromethyl, acetyl, benzoyl, formyl, nitro, dimethylamino or nitrile are tolerated.  相似文献   

3.
Copper-catalyzed cyanation of aryl halides was improved to be more economical and environmentally friendly by using water as the solvent and ligand-free Cu(OAc)2·H2O as the catalyst under microwave heating. The suggested methodology was applicable to a wide range of substrates including aryl iodides and activated aryl bromides.  相似文献   

4.
Commercially available [Ph3C][B(C6F5)4] served as a highly efficient metal‐free and single‐component initiator not only for the carbocationic polymerization of polar and bulky aryl isocyanides with extremely high activity up to 1.2×107 g of polymer/(molcat. h), but also for the helical‐sense‐selective polymerization of chiral aryl isocyanides and copolymerization with achiral aryl isocyanides to afford high‐molecular‐weight functional poly(aryl isocyanide)s with good solubility as well as AIE characteristics and/or a single‐handed helical conformation.  相似文献   

5.
An interesting and convenient procedure for the oxidative transformation of aryl alkyl ketones and secondary benzylic alcohols to aryl carboxylic acids has been developed. By using iodine and Fe(NO3)3·9H2O as the catalysts, DMSO and oxygen as the oxidants, the desired aryl carboxylic acids were synthesized in moderate to excellent yields (up to 91%).  相似文献   

6.
The general procedure for the rhodium-catalyzed cross-coupling of thiols with aryl iodides is described. The catalytic system consists of 5 mol % of [RhCl(cod)]2 and 10 mol % of PPh3 as a ligand. A variety of aryl iodides reacted with thiols, giving aryl thioethers in good to excellent yields. It is important to note that the deactivated aryl iodides such as 4-iodoanisole is worked smoothly to provide the corresponding aryl thioethers in excellent yields. Functional groups such as free-amines, chloro, are all tolerated under the employed reaction conditions.  相似文献   

7.
In this study, synthesis and application of diphenylphosphorylated PEG200 (DPPPEG200) are described. Herein, we report a very simple procedure for the preparation of DPPPEG200 as a stable solid through the reaction of PEG200 with ClPPh2. This compound was used as a very suitable ligand for the in situ generation of nano-Pd(0) particles through its reaction with PdCl2 as a pre-catalyst. Isolation of this catalyst is very simple through addition of diethyl ether to the reaction mixture and centrifugations. Full characterization of the nano-Pd(0)/DPPPEG200 was performed by XRD spectra, UV–Vis spectra, and also by TEM image. This nano-complex was used as an efficient catalyst for copper-free Sonogashira and homocoupling reactions of aryl halides. The sonogashira reaction of aryl halides was conducted at 80 °C in PEG. However, the homocoupling reaction was performed at 100 °C for aryl iodides and activated aryl bromides and at 130 °C for deactivated aryl bromides and aryl chlorides in PEG. The catalyst was recovered and recycled for four consecutive runs.  相似文献   

8.
In this work, ortho‐palladated complexes [Pd(µ‐Cl)(C6H4CH2 NRR′‐κ2‐C,N)]2 and [Pd(C6H4CH2NH2‐2‐C,N)Cl(Y)] were tested in the Suzuki–Miyaura cross‐coupling reaction. Cyclopalladated Pd(II) complexes as thermally stable catalysts can activate aryl bromides and chlorides. These complexes were active and efficient catalysts for the Suzuki–Miyaura reaction of aryl bromides and even less reactive aryl chlorides. The cross‐coupled products of a variety of aryl bromides and aryl chloride with phenylboronic acid in methanol as solvent at 60 °C were produced in excellent yields. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Ming Li 《Tetrahedron letters》2009,50(13):1478-310
An efficient procedure for the direct C-H arylation of electron-poor aromatics such as pyrazine and pyridine with aryl bomides is described. In the presence of catalytic amount of Cy3PAuCl and with the use of t-BuOK as base, pyrazine undergoes the direct C-H arylation with aryl bromides at 100 °C, and the yields of the arylated products depend on the nature of aryl bromides. In the cases of electron-rich aryl bromides used, the arylated pyrazines can be obtained in good to high yields. For electron-poor aryl bromides, the addition of AgBF4 is the crucial point to accelerate the coupling reaction to give the arylated products in moderate yields. Pyridine also reacts with electron-rich aryl bromides catalyzed by Cy3PAuCl to give a mixture of arylated regioisomers in moderate yield. However, in order to realize the direct C-H arylation of pyridine with electron-poor aryl bromides, the addition of silver salt as additive and a milder reaction temperature (60 °C) are required.  相似文献   

10.
Density functional theory has been used to investigate various solvated species that may be formed from palladium bis N-heterocyclic carbene complexes, [Pd(cyclo-C{NRCH}2)2], (PdL2) in benzene solution. Formation of an η2-arene complex is shown to stabilise a monocarbene species, PdL(η2-C6H5X), where the arene is either the solvent or a reacting aryl halide. Oxidative addition of an aryl chloride has been modelled, and the most likely transition state has been established as a PdL(arylchloride) species, with just one carbene ligand coordinated to the palladium. The catalytic cycle for aryl amination has been investigated and the oxidative addition of the aryl halide shown to be the rate determining step. Reductive elimination of the aryl amine has a lower activation energy. Oxidative addition of alkyl halides has been shown to be less favourable because of the absence of an unsaturated group, such as the aryl ring, to bond to the palladium.  相似文献   

11.
We report an efficient method for the preparation of aryl nitriles from aryl chlorides under either microwave assisted or thermal conditions. A catalyst system comprising tris(dibenzylidene acetone)dipalladium (Pd2(dba)3) and 2-(2′,6′-dimethoxybiphenyl)dicyclohexylphosphine (S-Phos) is shown to effectively promote cyanation of various aryl chlorides with Zn(CN)2 as the cyanide source.  相似文献   

12.
An efficient method for preparation of aryl nitriles—using [Pd{C6H2(CH2CH2 NH2)‐(OMe)2,3,4} (µ‐Br)]2 complex as an efficient catalyst and K4[Fe(CN)6] as a green cyanide source—from aryl bromides, aryl iodides and aryl chlorides under microwave irradiation has been reported. This complex has been demonstrated to be an active and efficient catalyst for this reaction. Using a catalytic amount of this synthesized palladium complex in DMF at 130 °C led to production of the cyanoarenes in excellent yields in short reaction times. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
The catalytic system based on Pd-phosphite for the dehalogenation reactions of aryl chlorides and bromides is described. The Pd-phosphite catalyst effectively promoted the dehalogenation of aryl halides to give dehalogenated products in moderate to excellent yields. The aryl chlorides required strong bases such as NaOtBu for this transformation, whereas the aryl bromides were dehalogenated in the presence of weak bases such as Cs2CO3. This catalytic system exhibited tolerance to functional groups such as methoxy, amine, hydroxyl, ether, amide, benzyl and ketone groups. It also demonstrated chemoselectivity in that bromochlorobenzene was converted only to chlorobenzene.  相似文献   

14.
Oxidative addition of aryl halides, ArX, to chlorocarbonylbis(triphenylphos-phine)iridium(I) yields iridium(III) aryl complexes, IrCl(X)(Ar)(CO)(PPh3)2. The reactivity of the aryl halide decreases in the order I > Br > C1, and electron-withdrawing substituents in the aryl ring accelerate the reaction. The IrIII compounds may be utilised as arylating agents.  相似文献   

15.
The reaction of biphenyl-based phosphine P(o-C6H4Me)Ph2 (1) with Pd(OAc)2 in toluene affords the air and water stable palladacycle (2) as a binuclear compound which has been characterized by multi-nuclear NMR spectroscopy and elemental analysis as a mixture of cis and trans isomers with relative intensity of 1:3, respectively. This palladacycle is a highly efficient catalyst precursor for the coupling of aryl boronic acids and aryl halides. Both activated and deactivated aryl bromides and chlorides are efficiently coupled in the presence of 2 to furnish the corresponding cross-coupled products in excellent yields, and a wide variety of functional groups are tolerated in aryl halides. This methodology has also been extended for the coupling of bromoarylphosphines and bromoarylphosphine oxides with aryl boronic acids for the generation of hindered corresponding products.  相似文献   

16.
A methodology for the cyanation of aryl iodides and activated aryl bromides is reported using water as the solvent and K4[Fe(CN)6] as the cyanide source. Reactions are complete within 20 min.  相似文献   

17.
A series of poly(aryl ether)s were successfully prepared via aromatic nucleophilic substitution reaction from various bisphenols and a novel bipolar aryl difluoride monomer containing electron‐donor triphenylamine and electron‐acceptor 1,2,4‐triazole moieties. The poly(aryl ether)s exhibited excellent solubility in organic solvents such as dimethylformamide, chloroform, and tetrahydrofuran at room temperature. The poly(aryl ether)s showed high thermal stability with Td10 higher than 500 °C and glass transition temperatures (Tg) higher than 187 °C. The thin films of the poly(aryl ether)s indicated bistable resistive switching behavior with ON/OFF current ratios as high as 103. The switching on and switching off bias voltages of the poly(aryl ether)s were affected by the bisphenol moiety. The good resistive switching behavior of the poly(aryl ether)s made them promising candidates for future nonvolatile memory applications. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6861–6871, 2008  相似文献   

18.
cis,cis,cis-1,2,3,4-Tetrakis(diphenylphosphinomethyl)cyclopentane/[PdCl(C3H5)]2 efficiently catalyses the Heck reaction of alk-1-en-3-ol with a variety of aryl bromides. In the presence of hex-1-en-3-ol or oct-1-en-3-ol, the β-arylated carbonyl compounds were selectively obtained. Linalool and 2-methylbut-3-en-2-ol led to the corresponding 1-arylalk-1-en-3-ol derivatives. Turnover numbers up to 69,000 can be obtained for this reaction. A minor electronic effect of the substituents of the aryl bromide was observed. Similar reaction rates were observed in the presence of activated aryl bromides such as bromoacetophenone and deactivated aryl bromides such as bromoanisole.  相似文献   

19.
A highly general, convenient, and inexpensive catalyst system was developed for the N-arylation of sulfonamides with aryl iodides or bromides by using 5-20 mol % of CuI as catalyst, 20 mol % of N-methylglycine (for aryl iodides) or N,N-dimethylglycine (for aryl bromides) as ligand, and K3PO4 as base.  相似文献   

20.
A general preparative procedure for polyfluorinated aryl(dihydroxy)boranes C6H5‐nFnB(OH)2 (n = 3 — 5) is described. Polyfluorinated aryl(dihydroxy)boranes are easily dehydrated to the corresponding tri(aryl)boroxins (C6H5‐nFnBO)3 by thermal or chemical treatment. The property of the acids C6H5‐nFnB(OH)2 to condensate depends on the number and on the position of the fluorine atoms in the aryl group. Examples of both classes of boron compounds were isolated as pure individuals and characterized by multinuclear NMR spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号