首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The in vitro antifungal activity of the dithiocarbamate organotin complexes [Sn{S2CN(CH2)4}2Cl2] ( 1 ), [Sn{S2CN(CH2)4}2Ph2] ( 2 ), [Sn{S2CN(CH2)4}Ph3] ( 3 ), [Sn{S2CN(CH2)4}2n‐Bu2] ( 4 ), [Sn{S2CN(CH2)4}Cy3] {Cy = cyclohexyl} ( 5 ), [Sn{S2CN(C2H5)2}2Cl2] ( 6 ), [Sn{S2CN(C2H5)2}2Ph2] ( 7 ), [Sn{S2CN(C2H5)2}Ph3] ( 8 ), [Sn{S2CN(C2H5)2}3Ph] ( 9 ) and [Sn{S2CN(C2H5)2}Cy3] ( 10 ) has been screened against Candida albicans (ATCC 18804), Candida tropicalis (ATCC 750) and resistant Candida albicans collected from HIV‐positive Brazilian patients with oral candidiasis. All compounds exhibited antifungal activities and complexes 3 and 8 displayed the best results. We have investigated the effect of compounds 1–10 on the cellular activity of the yeast cultures. Changes in mitochondrial function have not been detected. However, all drugs reduced ergosterol biosynthesis. Preliminary studies on DNA integrity indicated that the compounds do not cause gross damage to yeast DNA. The data suggest that these compounds share some mechanisms of action on cell membranes similar to that of polyene but not with azole drugs, normally used in Candida infections. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
《Polyhedron》2002,21(9-10):909-915
The series of complexes [N3P3(OC6H5)5OC6H4CH2CN·MCln]PF6, N3P3(OC6H4CH2CN)6·(MCln)6](PF6)6, [N3P3(OC6H5)5OC6H4CH2CN·MCln−1]Cl and [N3P3(OC6H4CH2CN)6·(MCln−1)6]Cl6, MCln=MnCl2, FeCl3, CoCl2, NiCl2, CuCl2 have been synthesized by reaction of the corresponding cyclophosphazene ligands: N3P3(OC6H5)5OC6H4CH2CN (L1) and N3P3(OC6H4CH2CN)6 (L2) with the respective salts MCln in CH3OH as solvent and in presence or absence of NH4PF6. The new compounds were characterized by elemental analysis and IR, UV–Vis and EPR spectroscopy as well as electrochemical methods. The reaction of CuCl2 with the ligand L1 affords the copper (I) complex. [N3P3(OC6H5)5OC6H4CH2CN·Cu]PF6 instead the expected Cu(II) complex, which was characterized by multinuclear NMR. For comparison, the complex [N3P3(OC6H5)5OC6H4CH2CN·ZnCl]PF6 was also prepared. The hexametalladendrimers of iron exhibits a six-electron reduction while that the correspondent monometalladendrimers exhibit a single one-electron reduction. Upon coordination νCN increase in a similar way to crystal field effects dependence with the metal.  相似文献   

3.
Abstract

The interaction of the sodium salts of thiosemicarbazones with diphenylantimony chloride in 1:1 molar ratio in benzene solution lead to the formation of derivatives, Ph2Sb[SC(NH2)NN: C(R)R′] where R = H; R′ [dbnd] C6H5, CH3OC6H4, C6H5CH[dbnd]CH, and R′ [dbnd] CH3; R′[dbnd]C6H5, CH3OC6H4, C6H4CH3, respectively. The resulting complexes have been characterised on the basis of elemental analyses and molecular weight determination. The mode of bonding of the ligands with the metal atom has been proposed on the basis of I.R., 1H and 13C NMR studies. All these ligands are found to behave as monofunctional bidentate moiety in these complexes.  相似文献   

4.
Both (C6H5)2P(CH2)3CN and (C6H5)2P(CH2)4CN have been obtained from the reaction of Br(CH2)nCN (n = 3, 4) with (C6H5)2POCH3 followed by reduction with (C6H5)2SiH2. These phosphine-nitrile ligands form L2PdCl2 complexes which are shown by IR measurements to have trans geometries with the phosphine portions of the ligands coordinated. Reactions of o-BrC6H4CN with CH3(CH2)3Li followed by R2PCl (R = C6H5 or (CH3)2N) have been used to provide good yields of the corresponding R2P-o-C6H4CN products.  相似文献   

5.
Three triorganotin(IV) complexes of composition R3SnLH (R = Me, Bu and Ph and LH = 2-[(E)-2-(4-hydroxy-3,5-dimethylphenyl)-1-diazenyl]benzoate) have been synthesized and characterized by 1H, 13C, 119Sn NMR, and IR spectroscopic techniques in combination with elemental analysis. The crystal structures of the carboxylate ligand HO2CC6H4{NN(C6H2-4-OH-3,5-(CH3)2)}-o in its neutral form and three triorganotin(IV) complexes, viz., polymeric (R3Sn[O2CC6H4{N–N(H)(C6H2-4-O-3,5-(CH3)2)}-o])n (R = Me (1) and Bu (2)) and monomeric Ph3Sn[O2CC6H4{N–N(H)(C6H2-4-O-3,5-(CH3)2)}-o] (3) complexes are reported. The polymeric complexes 1 and 2 exist as extended chains in which the LH-bridged Sn-atoms adopt a trans-R3SnO2 trigonal bipyramidal configuration with R groups in the equatorial positions and the axial sites occupied by an oxygen atom from the carboxylate ligand and the phenoxide O atom of the next carboxylate ligand. The Sn atom in complex 3 has a distorted tetrahedral geometry. In all three complexes, the carboxylate ligand is in the zwitterionic form with the phenolic proton moved to the nearby azo nitrogen atom, in contrast to the free carboxylic acid ligand which is in the azo form.  相似文献   

6.
Three triorganotin(IV) complexes of composition R3SnLH (R = Me, Bu and Ph and LH = 2-[(E)-2-(4-hydroxy-3,5-dimethylphenyl)-1-diazenyl]benzoate) have been synthesized and characterized by 1H, 13C, 119Sn NMR, and IR spectroscopic techniques in combination with elemental analysis. The crystal structures of the carboxylate ligand HO2CC6H4{NN(C6H2-4-OH-3,5-(CH3)2)}-o in its neutral form and three triorganotin(IV) complexes, viz., polymeric (R3Sn[O2CC6H4{N–N(H)(C6H2-4-O-3,5-(CH3)2)}-o])n (R = Me (1) and Bu (2)) and monomeric Ph3Sn[O2CC6H4{N–N(H)(C6H2-4-O-3,5-(CH3)2)}-o] (3) complexes are reported. The polymeric complexes 1 and 2 exist as extended chains in which the LH-bridged Sn-atoms adopt a trans-R3SnO2 trigonal bipyramidal configuration with R groups in the equatorial positions and the axial sites occupied by an oxygen atom from the carboxylate ligand and the phenoxide O atom of the next carboxylate ligand. The Sn atom in complex 3 has a distorted tetrahedral geometry. In all three complexes, the carboxylate ligand is in the zwitterionic form with the phenolic proton moved to the nearby azo nitrogen atom, in contrast to the free carboxylic acid ligand which is in the azo form.  相似文献   

7.
Six new organotin carboxylates based on 1,3-benzenedicarboxylic acid and 1,4-benzenedicarboxylic acid derivatives, namely (Ph3Sn)2(2,5-L1)(C2H5OH)2 (1) (2,5-H2L1 = 2,5-dibenzoylterephthalic acid), (Ph3Sn)2(2,5-L2)(C2H5OH)2 (2) (2,5-H2L2 = 2,5-bis(4-methylbenzoyl)terephthalic acid), (Ph3Sn)2(2,5-L3)(C2H5OH)2 (3) (2,5-H2L3 = 2,5-bis(4-ethylbenzoyl)terephthalic acid), [(n-Bu2Sn)4(4,6-L1)O2(OH)(OC2H5)]2·2(C2H5OH) (4) (4,6- H2L1 = 4,6-dibenzoylisophthalic acid), [(n-Bu2Sn)4(4,6-L1)O2(OH)(OC4H9)]2·2(C4H9OH) (5) and [(n-Bu2Sn)4(4,6-L2)O2(OH)(OC2H5)]2·2(C2H5OH) (6) (4,6-H2L2 = 4,6-bis(4-methylbenzoyl)isophthalic acid), have been synthesized. All the organotin carboxylates have been characterized by elemental analysis, IR, 1H and 13C NMR spectroscopy and X-ray crystallography diffraction analyses. The structural analysis reveals that complexes 1-3 show similar structures, containing binuclear triorganotin skeletons. The significant intermolecular O-H?O hydrogen bonds linked the complexes 1-3 to form a novel 2D network polymer with 38-member macrocycles. In complexes 4-6, two Sn4O4 ladders are connected by two 1,3-benzenedicarboxylic acid derivatives to yield ladder-like octanuclear architectures and form macrocycle with 24 atoms. In addition, the antitumor activities of complexes 1-6 have been studied.  相似文献   

8.
Spectroscopic investigations, including 31P, 1H and 13C NMR studies, on the formally 6-coordinate bisphosphine complexes [MX(CO)2{Ph2P(CH2)nPPh2}(η3-C7H7)] (M  Mo, W; X  I, Cl; n = 2 (dppe), n = 1 (dppm); C7H7  cycloheptatrienyl) reveal a structure with no molecular plane of symmetry in which inequivalent P-donor atoms are arranged cis-cis and cis-trans to the two mutually cis-carbonyl groups. The dppe complexes exhibit a fluxional process which interconverts inequivalent phosphorus environments. Low temperature 1H and 13C NMR studies on the diamine derivatives [MCl(CO)2(H2NCH2CH2NH2)(η3-R)] (M  Mo, W, R  C7H7; M  Mo, R  C3H5 (allyl)) imply that the non-symmetric structure of the bisphosphine analogues is adopted. The adducts [WI(CO)2{Ph2P(CH2)n-PPh2} {η3-C9H7(CN)4}] (n = 1 or 2) are formed by tetracyanoethene addition to the trihapto-bonded cycloheptatrienyl ring of the tungsten complexes [WI(CO)2-{Ph2P(CH2)nPPh2}(η3-C7H7)] (n = 1 or 2).  相似文献   

9.
Interesting varieties of heterobimetallic mixed-ligand complexes [Zr{M(OPri) n }2 (L)] (where M = Al, n = 4, L = OC6H4CH = NCH2CH2O (1); M = Nb, n = 6, L = OC6H4CH = NCH2CH2O (2); M = Al, n = 4, L = OC10H6CH = NCH2CH2O (3); M = Nb, n = 6, L = OC10H6CH = NCH2CH2O (4)), [Zr{Al(OPri)4}2Cl(OAr)] (where Ar = C6H3Me2-2,5 (5); Ar = C6H2Me-4-Bu2-2,6 (6), [Zr{Al(OPri)4}2(OAr)2] (where Ar = C6H3Me2-2,5 (7); Ar = C6H2Me-4-Bu2-2,6 (8), [Zr{Al(OPri)4}3(OAr)] (where Ar = C6H3Me2-2,5 (9); Ar = C6H3Me2-2,6 (10), [ZrAl(OPri)7-n (ON=CMe2) n ] (where n = 4 (11); n = 7 (12), [ZrAl2(OPri)10-n (ON=CMe2) n ] (where n = 4 (13); n = 6 (14); n = 10 (15) and [Zr{Al(OPri)4}2{ON=CMe(R)} n Cl2–n] [where n = 1, R = Me (16); n = 2, R = Me (17); n = 1, R = Et (18); n = 2, R = Et (19)] have been prepared either by the salt elimination method or by alkoxide-ligand exchange. All of these heterobimetallic complexes have been characterized by elemental analyses, molecular weight measurements, and spectroscopic (I.r., 1H-, and 27Al- n.m.r.) studies.  相似文献   

10.
《Polyhedron》1986,5(9):1483-1485
Reactions of Rh(ClO4)(CO)(PPh3)2 with nitriles produce new cationic rhodium(I) complexes, [RhL(CO)(PPh3)2]ClO4 [L = CH3CN (1), CH3CH2CH2CN (2) or C6H5CN (3)], whose spectral data suggest that the nitriles are coordinated through the nitrogen atom. Formation constants for the reaction Rh(ClO4)(CO)(PPh3)2 + L ⇋ [RhL(CO)(PPh3)2]ClO4, have been measured to be 1.01 × 105 M−1 (CH3CN), 1.07 × 105 M−1 (CH3CH2CH2CN) and 2.59 × 104 M−1 (C6H5CN) at 25°C in monochlorobenzene. The differences in the formation constants for the different nitriles seem to be predominantly due to differences in ΔH (not to differences in ΔS). The nitriles in 1–3 are readily replaced with nitrogen base ligands (unsaturated nitriles and pyridine) and PPh3.  相似文献   

11.
The synthesis of the first all-tin-dendrimer Sn[(CH2)4SnPh3]4 (2) results from complete hydrostannation of tetra(but-3-enyl)stannane (1) with triphenyltin hydride. Selective cleavage of one phenyl group from each dendron of 2 with anhydrous HCl results in Sn[(CH2)4Sn(Cl)Ph2]4 (3), which on treatment with LiAlH4 yields the corresponding hydride derivative Sn[(CH2)4Sn(H)Ph2]4 (4) containing four reactive Sn-H bonds. The cyclopentadienyl derivative Sn[(CH2)4Sn(C5H5)Ph2]4 (5) as well as the transition metal substituted derivatives Sn[(CH2)4Sn{Co(CO)4}Ph2]4 (6), Sn[(CH2)4Sn{Fe(CO)2C5H5}Ph2]4 (7), and Sn[(CH2)4Sn{Mn(CO)5}Ph2]4 (8) have been prepared by coupling of 3 with the appropriate Grignard or sodium derivatives of the transition metal moieties. The new compounds were characterized by elemental analyses, IR, 1H-, 13C- and 119Sn NMR spectroscopy and MALDI-TOF mass spectrometry.  相似文献   

12.
Polymerization of homologues of 1-(trimethylsilyl)-1-propyne [CH3C?CSi(CH3)3] was studied. CH3C?CSi(CH3)2(n-C6H13) ( I ) polymerized with 1 : 1 mixtures of TaCl5 and organometallic cocatalysts (e.g., Ph4Sn and Ph3Bi) to produce in good yields a polymer having a weight-average molecular weight (M w) over 1 × 106. CH3C?CSi(CH3)2 Ph ( II ) and CH3C?CSi(C2H5)3 ( III ) formed polymers having M w's of ~ 5 × 105 in moderate yields in the presence of TaCl5-based catalysts. In contrast, none of CH3C?CSi(CH3)2(i-C3H7), CH3C? CSi(CH3)2(t,-C4H9), C2H5C?CSi(CH3)3, and n,-C4H9C?CSi(CH3)3 polymerized, which is attributed to the steric effect of the monomers. Some other 1-silyl-1-propynes also failed to polymerize. The three new polymers formed from ( I )–( III ) had the structure \documentclass{article}\pagestyle{empty}\begin{document}$\rlap{--} [{\rm CCH}_{\rm 3} \hbox{=\hskip-2pt=} {\rm C(SiRR'R''}\rlap{--} ]_n$\end{document} according to IR and 13C-NMR spectra. They were white solids, soluble in low-polarity solvents (e.g., toluene and chloroform) and stable enough in air at room temperature.  相似文献   

13.
The chloro-bridged dinuclear compound [{Pd[5-(COH)C6H3C(H)N(Cy)-C2,N]}(μ-Cl)]2 (1), reacts with tertiary diphosphines in 1:1 molar ratio to give [{Pd[5-(COH)C6H3C(H)NCy-C2,N](Cl)}2(μ-Ph2PRPPh2)] (R: CH2, 2; CH2CH2, 3; (CH2)4, 4; (CH2)6, 5; Fe(C5H4)2, 6; trans-CHCH, 7; C≡C, 8). Treatment of 1 with Ph2PCH2CH2AsPh2 (arphos) gives the dinuclear complex [{Pd[5-(COH)C6H3C(H)N(Cy)-C2,N](Cl)}2(μ-Ph2PCH2CH2AsPh2)] (9). The reaction of 1 with tertiary diphosphines or arphos in 1:2 molar ratio in the presence of NH4PF6 yields the mononuclear compounds [Pd{5-(COH)C6H3C(H)NCy-C2,N}(Ph2PRPPh2-P,P)][PF6] (R: (CH2)4, 10; (CH2)6, 11; Fe(C5H4)2, 12; 1,2-C6H4, 13; cis-CHCH, 14; NH, 15) and [Pd{5-(COH)C6H3C(H)N(Cy)-C2,N}(Ph2PCH2CH2AsPh2-P,As)][PF6] (16). 1H-, 31P-{1H}- and 13C-{1H}-NMR, IR and mass spectroscopic data are given. The crystal structures of compounds 3, 6, 9 and 16 have been determined by X-ray crystallography.  相似文献   

14.
Reaction of alkali metal halides (MX) with methylenediphosphine oxides and various related compounds in nonaqueous solutions leads to the formation of complex compounds. The compositions, properties, and stabilities of these compounds, which have been studied in detail in acetonitrile, are determined by the nature of the cations and anions of the alkali metal halides. Formation of neutral complexes with the composition [MX · L] and cationic complexes with the composition [ML]+ has been established. The most characteristic representative of complexes of the first type is [NaI · L]; in the complexes studied, L=R2P(O)CH2P(O)R2 (R=Bu, BuO, or Ph), Ph2P(O)CH2P(O) (OC2H5)CH2P(O)Ph2 and (p-OCH3C6H4)2P(O)CH2P(O)(C6H4CF3-p)2. Compound [LiL]+ is characteristic of complexes of the second type; the compounds containing Ph3P(O), Ph2P(O)CH2P(O)Ph2, and Ph2P(O)CH2P(O)(OC2H5)CH2P(O)Ph2 as ligands have been studied. Stability constants of the complexes [NaI · L] and [LiL]+ have been determined by measuring the dependence of the electrical conductivity of solutions of the alkali metal halides in acetonitrile on the concentration of the ligands. The complex-forming power of phosphine oxides increases with increase in the number of P=O groups. Stabilities of the complexes [NaI · L] with ligands with identical structure decrease with increase in the electronegativity of the substituents on the phosphorus atoms.  相似文献   

15.
The preparation of a new functionalized cyclopentadienyl ligand bearing a nitrile pendant substituent, (C5H4CMe2CH2CN)? is reported. The corresponding lithium salt of this ligand (1) was prepared by the reaction of in situ lithiated acetonitrile with 6,6-dimethylfulvene. The ligand was subsequently utilized for the synthesis of group 4 metal complexes [(η5–C5H4CMe2CH2CN)2MCl2] (M = Ti, 2; M = Zr, 3; M = Hf, 4), [(η5–C5H5) (η5–C5H4CMe2CH2CN)MCl2] (M = Ti, 7; M = Zr, 8), and [(η5-C5Me5) (η5 C5H4CMe2CH2CN)2ZrCl2] (9). Alternative route to 2 comprised the preparation of half-sandwich complex [(η5–C5H4CMe2CH2CN)TiCl3] (6). The prepared compounds were characterized by common spectroscopic methods and the solid state structures of complexes 2, 3, 4, 7, and 9 were determined by the single-crystal X-ray diffraction analysis. In addition, compound 7 was converted to the corresponding dimethyl derivative [(η5–C5H5) (η5–C5H4CMe2CH2CN)TiMe2] (10) and also treated with the chloride anion abstractor Li[B(C6F5)4] to generate the cationic complex with the coordinated nitrile group, as suggested by the NMR spectroscopy. A formation of yet another cationic complex was observed upon treating compound 10 with (Ph3C)[B(C6F5)4].  相似文献   

16.
Crystalline tetraphenylantimony and tetratolylantimony complexes with N,N-dialkyldithiocarbamate ligands [Sb(C6H5)4(S2CNR2)] (R = CH3, C2H5, and C3H7 and R2 = (CH2)6) were synthesized by ligand exchange reactions and studied by 13C and 15N CP/MAS NMR spectroscopy. X-ray diffraction analysis revealed that the complex [Sb(n-CH3-C6H4)4{S2CN(C3H7)2}] exists as the single molecular form, while [Sb(C6H5)4{S2CN(CH2)6}] exists as two molecular conformers. The 13C and 15N signals were assigned to the positions of the atoms in the isomeric structures [Sb(C6H5)4{S2CN(CH2)6}] in terms of different degrees of double bonding in the formally single =N-C(S)S-bond.  相似文献   

17.
Eight diorganotin esters of salicylidene-L-tryptophan(Sal-T) and salicylidene-L-valine(Sal-V), [(n-Bu)2Sn(Sal-T)] (1), [(n-Bu)2Sn(Sal-V)] (2), [Ph2Sn(Sal-T)] (3), [Ph2Sn(Sal-V)] (4), [(PhCH2)2Sn(Sal-T)] (5), [(PhCH2)2Sn(Sal-V)] (6), [(4-ClC6H4CH2)2Sn(Sal-T)] (7) and [(4-ClC6H4CH2)2Sn(Sal-V)] (8) have been synthesized and characterized by elemental analysis, IR and 1H NMR. The crystal structures of compounds 1 and 2 have been determined by X-ray single crystal diffraction. Their structures show the tin atoms of two compounds are rendered five-coordinated in distorted trigonal bipyramidal geometries.  相似文献   

18.
Four triorganotin complexes of the types [(Ph3Sn)(C15H10FN4S)] ( 3 ), [(CH3)3Sn(C15H10FN4S)]n ( 4 ), [(Ph3Sn)(C13H9FN4S2)] ( 5 ), and [(CH3)3Sn(C13H9FN4S2)]n ( 6 ) have been obtained by Schiff base compound 1 (derived from 4‐fluorobenzaldehyde) and compound 2 (derived from thiophene‐2‐carboxadehyde) with triorganotin chloride in the presence of sodium ethoxide. All the complexes were characterized by elemental analysis, IR, and NMR spectroscopies, and X‐ray diffraction analyses, which revealed that complexes 3 and 5 are mononuclear structures, complex 4 and 6 are one‐dimensional zigzag infinite chains via N → Sn and S → Sn bonding interactions. © 2008 Wiley Periodicals, Inc. Heteroatom Chem 19:583–591, 2008; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20481  相似文献   

19.
Various (adamantylimido)vanadium(V) dialkyl complexes containing aryloxo ligands, V(NAd)(CH2SiMe3)2(OAr) [Ad = 1-adamantyl (1); Ar = Ph (a), 4-FC6H4 (b), 2,6-F2C6H3 (c), 2,6-Me2C6H3 (d), C6F5 (e)], have been prepared and identified. These complexes were employed as the catalyst precursors for ring-opening metathesis polymerization (ROMP) of norbornene (NBE) in the presence of PMe3 at 80 °C. The activity was strongly affected by the aryloxo substituent and increased in the order: C6H5 < 4-FC6H4 < 2,6-Me2C6H3 << 2,6-F2C6H3, C6F5. The same trend was observed in the ROMPs by the arylimido-aryloxo analogues, V(NAr′)(CH2SiMe3)2(OAr) (2a-e; Ar′ = 2,6-Me2C6H3), under the same conditions, and the activities by the arylimido analogues were generally higher than the adamantylimido analogues in most case. The (imido)vanadium(V) complexes containing O-2,6-F2C6H3 (1,2c) or OC6F5 (1,2e) exhibited high catalytic activities, and these results strongly suggest that electronic as well as steric factors play a role. Living ring-opening polymerization of THF proceeded in the presence of V(NAd) (CH2SiMe3)(OAr)2 (Ar = 2,6-Me2C6H3, C6F5) and [Ph3C][B(C6F5)4], affording high molecular weight polymers with narrow molecular weight distributions (ex. Mn = 2.11 × 105, Mw/Mn = 1.18).  相似文献   

20.
The reaction of RSnMe3 with the triarylmethyl salts Ph3CBF4, (C6Cl5)3CSbCl6 and (p-NO2C6H4)3CBr was studied. It was shown that the reaction of RSnMe3 (R  CH3, CH2CHCH2, C13H9 (9-fluorenyl), C9H7 (indenyl), PhCC and CN) with Ph3CBF4 is an electrophilic substitution process and that Ph3CR is formed quantitatively. The reactions of PhSnMe3 with Ph3CBF4 and RSnMe3 (R  CH3, CH2CHCH2, Ph and PhCC) with (C6Cl5)3SbCl6 are redox processes. (p-NO2-C6H4)3CBr only reacts with RSnMe3 when R is a strong electron withdrawing group (R  9-fluorenyl, indenyl and cyclopentadienyl) and (p-NO2C6H4)3CR and (p-NO2C6H4)3C. are formed. It is assumed that the reactions which give (p-NO2C6H4)3CR and (p-NO2C6H4)3C. are independent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号