首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Speeds of sound, uijk, of 1,3-dioxolane or 1,4-dioxane (i) + water (j) + formamide or dimethylformamide (k) ternary mixtures and of their binary subsystems, uij, of 1,3-dioxolane or 1,4-dioxane (i) + formamide or dimethylformamide (j), and water (i) + formamide or dimethylformamide (j) have been measured over the entire composition range at 308.15 K. The experimental data have been used to evaluate the excess isentropic compressibilities of binary (κsE)ij and ternary (κsE)ijk mixtures using their densities calculated from molar excess volume data. The Moelwyn-Huggins concept [M. L. Huggins, Polymer 12, 389 (1971)] of interaction between the surfaces of components of a binary mixture has been employed to evaluate the excess isentropic compressibilities (using the concept of connectivity parameter of third degree of a molecule, 3ξ, which in turn depends on its topology) of binary mixtures, and this method has been extended to predict excess compressibilities of ternary mixtures. Values of (κsE)ij and (κsE)ijk have also been calculated by the Flory theory. It was observed that (κsE)ij and (κsE)ijk predicted by the Moelwyn-Huggins approach compare well with calculated and experimental values.  相似文献   

2.
Speed of sound data, uijk, of 1,3-dioxolane or 1,4-dioxane(i) + water(j) + propan-1-ol or propan-2-ol(k) ternary mixtures and their sub-binary mixtures, uij, of 1,3-dioxolane or 1,4-dioxane(i) + water or propan-1-ol or propan-2-ol(j) and water(i) + propan-1-ol or propan-2-ol(j) mixtures have been measured over the entire composition range at 308.15 K. Isentropic compressibility changes of mixing, (κsE)ij and (κsE) ijk, for the binary and ternary mixtures have been determined by employing the observed speeds of sound data and densities (calculated from their molar excess volumes data). The (κsE) ij and (κsE) ijk values have also been predicated by the graph theoretical approach and the Flory theory. It has been observed that (κsE) ij and (κsE) ijk predicted by the graph theoretical approach compare well with their corresponding experimental values.  相似文献   

3.
《Fluid Phase Equilibria》1996,118(2):227-240
Densities, ϱ, and speeds of sound, u, have been measured for the ternary mixture {benzene + cyclohexane + hexane} and the corresponding binary mixtures {benzene + cyclohexane}, {benzene + hexane} and {cyclohexane + hexane}, at the temperature 298.15 K. Using these results, the isentropic compressibilities, κs, the excess isentropic compressibilities, κsE, and the speeds of sound deviations, Δu, have been calculated for both the binary mixtures and the ternary system. Excess isentropic compressibilities, κsE, and the speeds of sound deviations, Δu, have been fitted to the Redlich-Kister equation in the case of binary mixtures, while the equation of Cibulka was used to fit the values relating to the ternary system. The empiric equations of Redlich-Kister, Tsao-Smith, Kohler and Colinet have been applied in order to predict the κsE and Δu of ternary mixtures from the binary contributions.  相似文献   

4.
Densities, viscosities, speed of sound, and IR spectroscopy of binary mixtures of tert-butyl acetate (TBA) with benzene, methylbenzene, and ethylbenzene have been measured over the entire range of composition, at (298.15 and 308.15) K and at atmospheric pressure. From the experimental values of density, viscosity, speed of sound, and IR spectroscopy; excess molar volumes VE, deviations in viscosity Δη, deviations in isentropic compressibility Δκs and stretching frequency ν have been calculated. The excess molar volumes and deviations in isentropic compressibility are positive for the binaries studied over the whole composition, while deviations in viscosities are negative for the binary mixtures. The excess molar volumes, deviations in viscosity, and deviations in isentropic compressibility have been fitted to the Redlich–Kister polynomial equation. The Jouyban–Acree model is used to correlate the experimental values of density, viscosity, and speed of sound.  相似文献   

5.
Excess volumes (VE) ultrasonic sound velocities (u), isentropic compressibilities (Ks) and viscosities (η) have been measured for the binary mixtures of dimethylsulphoxide (DMSO) with 1,2-dichlorobenzene, 1,3-dichlorobenzene, 1,2,4-trichlorobenzene, o-chlorotoluene, m-chlorotoluene, p-chlorotoluene, o-nitrotoluene and m-nitrotoluene at T = 303.15 K. The measured VE values were positive over the entire composition range in all the binary mixtures. Isentropic compressibilities (Ks) have been computed for the same systems from precise sound velocity and density data. Further, deviation in isentropic compressibility (ΔKs) from ideal behaviour was also calculated. The viscosity data are analysed on the basis of corresponding states approach. Deviation in viscosities are positive over the entire composition range. The measured data is explained on the basis of intermolecular interactions between unlike molecules.  相似文献   

6.
Excess molar volumes (VE) and ultrasonic sound velocities at T = 303.15 K and ambient pressure have been measured as a function of composition for the binary liquid mixtures of dimethylsulphoxide (DMSO) with ketones. The ketones studied in the present investigation include ethyl methyl ketone (EMK), diethylketone (DEK), methyl propyl ketone (MPK), methyl isobutyl ketone (MIBK), and cyclohexanone (CH). The VE values were measured using a dilatometer and were positive over the entire mole fraction range for all systems except in the binary system DMSO with EMK where the VE exhibits an inversion in sign. The experimental VE values have been correlated using Redlich–Kister and Hwang et al. equations. The ultrasonic sound velocities for the above systems have been measured with a single crystal interferometer at a frequency of 3 MHz. The sound velocity (u) data have been used to calculate isentropic compressibility (Ks) and deviation in isentropic compressibility (ΔKs) over the entire range of volume fraction. The sound velocity data have been predicted in terms of free length theory (FLT), collision factor theory (CFT), and Nomoto relation. The results reveal that all the theories gave a satisfactory estimate of the sound velocity. The deviations in values of isentropic compressibility (ΔKs) were negative over the entire range of volume fraction in all the binary liquid mixtures. The results are interpreted with respect to possible molecular interactions between components.  相似文献   

7.
Molar excess volumes, V ijk E, and speeds of sound, U ijk , of o-toluidine (i) + benzene (j) + cyclohexane or n-hexane or n-heptane (k) ternary mixtures have been measured as a function of composition at 308.15 K. The observed speed of sound data have been utilized to determine the excess isentropic compressibilities, (K S E) ijk , of the ternary (i+j+k) mixtures. The Moelywn-Huggins concept (Huggins in Polymer 12: 389–399, 1971) of connectivity between the surfaces of the binary mixture constituents has been extended to ternary mixtures (using the concept of a connectivity parameter of third degree of molecules, 3 ξ, which in turn depends on its topology) to obtain an expression that describes well the measured V ijk E and (K S E) ijk data. The observed data have also been analyzed in terms of Flory’s theory.  相似文献   

8.
Excess molar volumes (VE) and ultrasonic studies at T = 303.15 K and atmospheric pressure have been measured over the whole composition range for the binary mixtures of N-methyl-2-pyrrolidone (NMP) with ketones. The ketones studied in the present investigation include methyl ethyl ketone (MEK), diethylketone (DEK), methyl propyl ketone (MPK), methyl isobutyl ketone (MIBK), and cyclohexanone (CH). The VE values were measured using a dilatometer and were negative over the entire mole fraction range for NMP with MEK, DEK, MPK, and MIBK and were positive for NMP with CH. The ultrasonic sound velocities for the above systems were measured with a single crystal interferometer at a frequency of 3 MHz. The sound velocity (u) results have been used to calculate isentropic compressibility (Ks) and deviation in isentropic compressibility (ΔKs) over the entire range of volume fraction. The sound velocity results have been predicted in terms of free length theory (FLT), collision factor theory (CFT), and Nomoto relation. The results reveal that all the theories gave a satisfactory estimate of the sound velocity. The deviation values of the isentropic compressibilities (ΔKs) were negative over the entire range of volume fraction in all the binary liquid mixtures except in the binary system NMP with CH, where we observed positive ΔKs values. The results are interpreted on possible molecular interactions between components.  相似文献   

9.
Densities (ρ), viscosities (η), and speeds of sound, (u) of the binary mixtures of 2-propanol with n-alkanes (n-hexane, n-octane, and n-decane) were measured over the entire composition range at 298.15 and 308.15 K and at atmospheric pressure. Using the experimental values of density, viscosity and speed of sound, the excess molar volumes (V E), viscosity deviations (Δη), deviations in speed of sound (Δu), isentropic compressibility (κ s), deviations in isentropic compressibility (Δκ s), and excess Gibbs energies of activation of viscous flow (ΔG* E) were calculated. These results were fitted to the Redlich–Kister type polynomial equation. The variations of these excess parameters with composition were discussed from the viewpoint of intermolecular interactions in these mixtures. The excess properties are found to be either positive or negative depending on the molecular interactions and the nature of liquid mixtures.  相似文献   

10.
Densities (ρ) of pure liquids and their mixtures have been measured at 303.15 and 313.15 K and atmospheric pressure over the entire composition range for the binary mixtures of benzylalcohol with 1-propanol, 1-butanol, 1-pentanol, and 1-hexanol by using Rudolph Research Analytical digital densitometer (DDM-2911 model). Further, the ultrasonic sound velocities for the above said mixtures were also measured at 303.15 and 313.15 K. The measured density data were used to compute excess molar volumes (V E) and these were compared with the values obtained by Hwang equation. Isentropic compressibility (κ S) and excess isentropic compressibilities (κ S E ) were evaluated from experimental sound velocity and density data. Moreover, the experimental sound velocities were analyzed in terms of theoretic models namely, collision factor theory and free length theory. The experimental results were discussed in terms of intermolecular interactions between component molecules.  相似文献   

11.
Excess volumes (v^E), ultrasonic velocities (u), isentropic compressibility (△Ks) and viscosities (η) for the binary mixtures of dimethyl formamide (DMF) with 1,2-dichlorobenzene, 1,3-dichlorobenzene, 1,2,4-trichlorobenzene, o-chlorotoluene, m-chlorotoluene, p-chlorotoluene, o-nitrotoluene and m-nitrotoluene at 303.15 K were studied. Excess volume data exhibit an inversion in sign for the mixtures of dimethyl formamide with 1,2- and 1,3-dichlorobenzenes and the property is completely positive over the entire composition range for the mixtures of dimethyl formamide with 1,2,4-trichlorobenzene, o-nitrotoluene and m-nitrotoluene. On the other hand, the quantity is negative for the mixtures of dimethyl formamide with chlorotoluenes. Isentropic compressibility (Ks) has been computed for the same systems from precise sound velocity and density data. Further, deviation of isentropic com- pressibility (△Ks) from ideal behavior was also calculated. AKs values are negative over the entire volume fraction range in all the binary mixtures. The experimental sound velocity data were analysed in terms of Free Length Theory (FLT) and Collision Factor Theory (CFT). The viscosity data were analysed on the basis of corresponding state approach. The measured data were discussed on the basis of intermolecular interactions between unlike molecules.  相似文献   

12.
Densities (ρ) at different temperatures from 303.15 to 318.15 K, speeds of sound (u) and viscosities (η) at 303.15 K were measured for the binary mixtures of cyclohexanol with 2-chlorotoluene, 3-chlorotoluene and 4-chlorotoluene over the entire range of composition. The excess volumes (VE) for the mixtures have been computed from the experimental density data. Further, the deviation in isentropic compressibilities (Δκs) and deviation in viscosities (Δη) for the binary mixtures have been calculated from the speed of sound and viscosity data, respectively. The VE values and Δκs values were positive and Δη data were negative for all the mixtures over the whole range of composition at the measured temperatures. The calculated excess functions VE, Δκs and Δη were fitted to Redlich–Kister equation. The excess functions have been discussed in terms of molecular interactions between component molecules of the binary mixtures.  相似文献   

13.
The density (ρ), viscosity (η) and ultrasonic velocity (u) of three mixtures consisting of 2- pyrrolidone with 1,3-propanediol (PD) and water and also of PD and water have been measured as a function of mole fraction at 308.15 K. The experimentally collected data has been used to calculate the excess molar volume (VE), deviation in viscosity (Δη), deviation in ultrasonic velocity (Δu), isentropic compressibility (κs), deviation in isentropic compressibility (Δκs) and excess Gibbs free energy of activation (ΔG*E). The Redlich–Kister polynomial equation has been used to fit the derived parameters. The variation in excessive thermodynamic properties as a consequence of possible molecular interactions is discussed.  相似文献   

14.
Densities, viscosities, and ultrasonic velocities of binary mixtures of trichloromethane with methanol, ethanol, propan-1-ol, and butan-1-ol have been measured over the entire range of composition, at (298.15 and 308.15) K and at atmospheric pressure. From the experimental values of density, viscosity, and ultrasonic velocity, the excess molar volumes (VE), deviations in viscosity (Δη), and deviations in isentropic compressibility (Δκs) have been calculated. The excess molar volumes, deviations in viscosity and deviations in isentropic compressibility have been fitted to the Redlich-Kister polynomial equation. The Jouyban-Acree model is used to correlate the experimental values of density, viscosity, and ultrasonic velocity.  相似文献   

15.
Molar excess volumes, VijkE, of 1,3-dioxolane or 1,4-dioxane (i) + water (j) + propan-1-ol or + propan-2-ol (k) ternary mixtures have been determined dilatometrically over the entire composition range at 308.15 K. The resulting data have been analyzed in terms of (1) the graph theoretical approach (which involves the topology of the mixture constituents), (2) the Sanchez and Locombe theory and (3) the Flory theory. It was observed that VijkEvalues predicted by the graph theory compare reasonably well with their corresponding experimental values. However, although VijkE values calculated by the Sanchez and Lacombe and Flory theories are of same sign and magnitude, the qualitative agreement is poor.  相似文献   

16.
Molar excess volumes, VijkE, of 1,3-dioxolane or 1,4-dioxane (i) + water (j) + formamide or dimethylformamide (k) ternary mixtures have been determined dilatometrically over the entire composition range at 308.15 K. The measured data have been analyzed in terms of (a) the graph theoretical approach, (b) the Lacombe and Sanchez theory, and (c) the Flory theory. It was observed that VijkE values predicted by graph theory compare well with their corresponding experimental values. However, VijkE values evaluated by the Lacombe and Sanchez as well as the Flory theory are of same sign and order.  相似文献   

17.
Speed of sound and density values for ternary systems (amino acid + salt + water): l-isoleucine/l-proline/l-glutamine in aqueous solutions of 1.5 M KCl, 1 M KNO3, and 0.5 M K2SO4 have been measured for several concentrations of amino acids at different temperatures (303.15, 308.15, 313.15, 318.15, and 323.15 K). Using speed of sound and density data, the thermodynamic parameters such as isentropic compressibility (κs), change in isentropic compressibility (Δκs) and relative change (Δκs/κ0) in isentropic compressibility have been computed. The isentropic compressibility values decrease with increase in the amino acid concentration as well as with temperature. The decrease in κs values with increase in concentration of l-isoleucine/l-proline/l-glutamine in 1.5 M KCl, 1 M KNO3, and 0.5 M K2SO4 has been ascribed to an increase in the number of incompressible zwitterions in solutions, and the formation of ‘zwitterions-ions’ and ‘zwitterions-water dipole’ entities in solutions. The decrease in κs values with increase in temperature has been attributed to the corresponding decrease of κrelax (a relaxational part of compressibility), which is dominant over the corresponding increase of κ (an instantaneous part of compressibility). The trends of variation of Δκs and Δκs/κ0 with variations in solute concentration and temperature have also been discussed in terms of solute-solute and solute-solvent intermolecular/interionic interactions operative in the systems.  相似文献   

18.
Density (ρ) and speed of sound (u) of the binary mixtures of tributyl phosphate (TBP) and alcohols (1-octanol, 1-decanol and isodecanol) were measured at temperatures from T (298.15 to 323.15) K over the entire composition range and at atmosphere pressure. Using these experimentally determined quantities, the excess molar volume (VE), deviation in isentropic compressibility (Δκs), internal pressure (pi), and adjusted correlation coefficients have been calculated. The excess molar volume has been fitted to a Redlich–Kister type polynomial equation. The positive or negative deviations shown by the excess quantities and the trend shown by the adjusted correlation coefficients have been interpreted in terms of intermolecular interactions and structure of components.  相似文献   

19.
Densities (ρ) and speed of sound (u) of the binary mixtures of 1-octanol and 1-decanol with dodecane and ternary mixture of {1-octanol + tributyl phosphate (TBP) + dodecane} were measured at temperatures from (298.15 to 323.15) K over the entire composition range and at atmospheric pressure. Using these experimentally determined quantities, the excess molar volume (VE), excess isentropic compressibility (κsE) for the binary mixtures and internal pressure (pi) of (alcohol + dodecane) binary mixtures have been calculated. The deviations shown by the excess quantities have been interpreted in terms of intermolecular interactions and structure of components. Using Hildebrand regular solution theory, several other parameters like the enthalpy and entropy of mixing of the binary components have been obtained. From acoustic measurements, the probable dimerization constant of the alcohols has also been determined. The values of these parameters give an indication of the subtle structural changes that occur in these binary mixtures.  相似文献   

20.
Densities (ρ), speeds of sound (u) and refractive indices (nD ), of the ternary mixture (diethylcarbonate + p-chloroacetophenone + 1-hexanol) and the involved binary mixtures (diethylcarbonate + p-chloroacetophenone, diethylcarbonate + 1-hexanol, and p-chloroacetophenone + 1-hexanol) have been measured over the whole composition range at 303.15 K for the liquid region and at ambient pressure. The data obtained are used to calculate isentropic compressibilities ks , isentropic compressibility deviations Δks and refractive index deviations ΔnD , of the binary and ternary mixtures. The data of isentropic compressibility deviations and refractive index deviations of the binary systems were fitted to the Redlich–Kister equation while the best correlation method for the ternary system was found using the Cibulka equation. The experimental data of the constitute binaries and ternaries are analysed to discuss the nature and strength of intermolecular interactions in these mixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号