首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new magnesium borate MgO·3B2O3·3.5H2O has been synthesized by the method of phase transformation of double salt and characterized by XRD, IR and Raman spectroscopy as well as by TG. The structural formula of this compound was Mg[B6O9(OH)2]·2.5H2O. The enthalpy of solution of MgO·3B2O3·3.5H2O in approximately 1 mol dm−3 HCl was determined. With the incorporation of the standard molar enthalpies of formation of MgO(s), H3BO3(s), and H2O(l), the standard molar enthalpy of formation of −(5595.02±4.85) kJ mol−1 of MgO·3B2O33.5H2O was obtained. Thermodynamic properties of this compound was also calculated by group contribution method.  相似文献   

2.
A new magnesium borate, β-2MgO·3B2O3·17H2O, has been synthesized by the method of phase transformation of double salt and characterized by XRD, IR, and Raman spectroscopy as well as by TG. The structural formula of this compound was Mg[B3O3(OH)5]·6H2O. The enthalpy of solution of β-2MgO·3B2O3·17H2O in approximately 1 mol dm−3 HCl was determined. With the incorporation of the standard molar enthalpies of formation of MgO(s), H3BO3(s), and H2O(l), the standard molar enthalpy of formation of −(10256.39±4.93) kJ mol−1 of β-2MgO·3B2O3·17H2O was obtained. Thermodynamic properties of this compound was also calculated by group contribution method.  相似文献   

3.
The enthalpies of solution of NaRb[B4O5(OH)4]·4H2O in approximately 1 mol dm−3 aqueous hydrochloric acid and of RbCl in aqueous (hydrochloric acid + boric acid + sodium chloride) were determined. From these results and the enthalpy of solution of H3BO3 in approximately 1 mol dm−3 HCl(aq) and of sodium chloride in aqueous (hydrochloric acid + boric acid), the standard molar enthalpy of formation of −(5128.02 ± 1.94) kJ mol−1 for NaRb[B4O5(OH)4]·4H2O was obtained from the standard molar enthalpies of formation of NaCl(s), RbCl(s), H3BO3(s) and H2O(l). The standard molar entropy of formation of NaRb[B4O5(OH)4]·4H2O was calculated from the Gibbs free energy of formation of NaRb[B4O5(OH)4]·4H2O computed from a group contribution method.  相似文献   

4.
Two pure strontium borates SrB2O4·4H2O and SrB2O4 have been synthesized and characterized by means of chemical analysis and XRD, FT-IR, DTA-TG techniques. The molar enthalpies of solution of SrB2O4·4H2O and SrB2O4 in 1 mol dm−3 HCl(aq) were measured to be −(9.92 ± 0.20) kJ mol−1 and −(81.27 ± 0.30) kJ mol−1, respectively. The molar enthalpy of solution of Sr(OH)2·8H2O in (HCl + H3BO3)(aq) were determined to be −(51.69 ± 0.15) kJ mol−1. With the use of the enthalpy of solution of H3BO3 in 1 mol dm−3 HCl(aq), and the standard molar enthalpies of formation for Sr(OH)2·8H2O(s), H3BO3(s), and H2O(l), the standard molar enthalpies of formation of −(3253.1 ± 1.7) kJ mol−1 for SrB2O4·4H2O, and of −(2038.4 ± 1.7) kJ mol−1 for SrB2O4 were obtained.  相似文献   

5.
The enthalpies of solution of Cs2Ca[B4O5(OH)4]2·8H2O(s) in approximately 1 mol dm−3 aqueous hydrochloric acid and of CsCl(s) in aqueous (hydrochloric acid + boric acid + calcium oxide) were determined. From these results and the enthalpies of solution of H3BO3(s) in approximately 1 mol dm−3 HCl(aq) and of CaO(s) in aqueous (hydrochloric acid + boric acid), the standard molar enthalpy of formation of −(10328 ± 6) kJ mol−1 for Cs2Ca[B4O5(OH)4]2·8H2O(s) was obtained from the standard molar enthalpy of formation of CaO(s), CsCl(s), H3BO3(s) and H2O(l). The standard molar entropy of formation of Cs2Ca[B4O5(OH)4]2·8H2O(s) was calculated from the thermodynamic relation with the standard molar Gibbs free energy of formation of Cs2Ca[B4O5(OH)4]2·8H2O(s) computed from a group contribution method.  相似文献   

6.
刘志宏  赵莉  胡满成 《中国化学》2003,21(12):1569-1572
Introduction   2MgO·B2 O3(Mg2 B2 O5)and 2MgO·B2 O3·H2 Omightbepreparedaswhiskermaterials .12MgO·B2 O3·H2 OnamedszaibelyiteisamagnesiumboratemineralwithastructuralformulaofMg2 [B2 O4 (OH) 2 ].2 Itisdifficulttosynthesizethiscompoundinthelaboratory .Recently ,weobtainedasimilarcompound 2MgO·B2 O3·1 5H2 Owhenwetriedtopreparewhiskerof 2MgO·B2 O3·H2 Obythephasetransformationof 2MgO·2B2 O3·MgCl2 ·14H2 OinH3BO3solutionunderhydrothermalcondition .Itishope fultopreparewh…  相似文献   

7.
A pure calcium borate Ca2[B2O4(OH)2]·0.5H2O has been synthesized under hydrothermal condition and characterized by XRD, FT-IR and TG as well as by chemical analysis. The molar enthalpy of solution of Ca2[B2O4(OH)2]·0.5H2O in HC1·54.582H2O was determined. From a combination of this result with measured enthalpies of solution of H3BO3 in HC1·54.561H2O and of CaO in (HCl + H3BO3) solution, together with the standard molar enthalpies of formation of CaO(s), H3BO3(s) and H2O(l), the standard molar enthalpy of formation of −(3172.5 ± 2.5) kJ mol−1 of Ca2[B2O4(OH)2]·0.5H2O was obtained.  相似文献   

8.
A new magnesium borate Mg2[B2O4(OH)2]·H2O has been synthesized by the method of phase transformation of double salt at hydrothermal condition and characterized by XRD, IR, TG and DSC. The enthalpy of solution of Mg2[B2O4(OH)2]·H2O in 0.9764 mol L–1 HCl was determined. With the incorporation of the enthalpies of solution of H3BO3 in HCl (aq), of MgO in (HCl+H3BO3) (aq), and the standard molar enthalpies of formation of MgO(s), H3BO3(s), and H2O(l), the standard molar enthalpy of formation of –(3185.78±1.91) kJ mol–1 of Mg2[B2O4(OH)2]·H2O was obtained.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

9.
Gold nanoparticles (Au nps) have been synthesized in aqueous solution of polyvinyl pyrrolidone (PVP) by gamma radiolysis from HAuCl4·3H2O precursor and in presence of small concentrations of Ag+, 2-propanol and acetone. The effect of different experimental parameters, such as concentration of reactant, molecular weight of PVP on nanoparticle formation was studied. TEM image confirmed that spherical Au nps were formed when PVP of molecular weight 360,000 Da was used as capping agent. H2O2 is a reactant in the enzyme catalyzed reaction of o-phenylene diamine (o-PDA). The reaction product has a weak absorption in the yellow region of the spectrum. When this product interacts with Au nps, it leads to enhancement of the absorption peak. The nanoparticles synthesized by radiation method were used for estimation of H2O2. The absorbance value of this peak at λmax was observed to change with H2O2 concentration, which was monitored for estimation of H2O2. The response is linear in the range of 2.5×10−6 mol dm−3 to 2×10−4 mol dm−3 and 1×10−7 mol dm−3 to 3×10−6 mol dm−3 H2O2 in two separate sets of experimental parameters with detection limit 1×10−7 mol dm−3.  相似文献   

10.
Two pure zinc borates with microporous structure 3ZnO·3B2O3·3.5H2O and 6ZnO·5B2O3·3H2O have been synthesized and characterized by XRD, FT-IR, TG techniques and chemical analysis. The molar enthalpies of solution of 3ZnO·3B2O3·3.5H2O(s) and 6ZnO·5B2O3·3H2O(s) in 1 mol · dm−3 HCl(aq) were measured by microcalorimeter at T = 298.15 K, respectively. The molar enthalpies of solution of ZnO(s) in the mixture solvent of 2.00 cm3 of 1 mol · dm−3 HCl(aq) in which 5.30 mg of H3BO3 were added were also measured. With the incorporation of the previously determined enthalpy of solution of H3BO3(s) in 1 mol · dm−3 HCl(aq), together with the use of the standard molar enthalpies of formation for ZnO(s), H3BO3(s), and H2O(l), the standard molar enthalpies of formation of −(6115.3 ± 5.0) kJ · mol−1 for 3ZnO·3B2O3·3.5H2O and −(9606.6 ± 8.5) kJ · mol−1 for 6ZnO·5B2O3·3H2O at T = 298.15 K were obtained on the basis of the appropriate thermochemical cycles.  相似文献   

11.
A pure mixed alkali–alkaline earth metal borate of Li2Sr4B12O23 with microporous structure has been synthesized by high-temperature solid state reaction, and characterized by XRD, FT-IR, TG techniques, and chemical analysis. The molar enthalpies of solution of Li2Sr4B12O23 in 1 mol L?1 HCl(aq), and of SrCl2·H2O(s) in [1 mol L?1 HCl + H3BO3 + LiCl·H2O](aq) have been determined by microcalorimeter at 298.15 K, respectively. From these data and with the incorporation of the previously determined enthalpies of solution of H3BO3(s) in 1 mol L?1 HCl(aq), and of LiCl·H2O(s) in [1 mol L?1HCl + H3BO3](aq), together with the use of the standard molar enthalpies of formation for SrCl2·6H2O(s), LiCl·H2O(s), H3BO3(s), HCl(aq), and H2O(l), the standard molar enthalpy of formation of ?(11,534.0 ± 10.0) kJ mol?1 for Li2Sr4B12O23 was obtained on the basis of the appropriate thermochemical cycle.  相似文献   

12.
0IntroductionTherearemanykindsofhydratedcalciumbo-rates,bothnaturalandsynthetic.Someofthemarematerialsusedinglass,potteryandporcelainenamelindustry,especiallyinunalkaliglassindustry.4CaO·5B2O3·7H2O,calledpriceite,isacalciumboratemin-eral,notfoundinCaO-B…  相似文献   

13.
The enthalpies of solution of β-CsB5O8 · 4H2O in HCl (aq), and of CsCl in (HCl + H3BO3) (aq) were determined. With the incorporation of the previously determined enthalpy of solution of H3BO3 in HCl (aq) and the standard molar enthalpies of formation of CsCl (s), H3BO3 (s), HCl (aq), and H2O (l), the standard molar enthalpy of formation of β-CsB5O8 · 4H2O of −(4846.29 ± 0.58) kJ · mol−1 was obtained. Thermodynamic properties of this compound were also calculated by a group contribution method.  相似文献   

14.
The molar enthalpies of solution of 2MgO · 2B2O3 · MgCl2 · 14H2O in approximately 1 mol · dm−3 aqueous hydrochloric acid (HCl) and of MgCl2 · 6H2O(s) in aqueous (approximately 1 mol · dm−3 HCl + MgCl2 + H3BO3) at T=298.15 K were determined. From a combination of these results with measured enthalpies of solution of boric acid (H3BO3) in HCl(aq) and of magnesium oxide (MgO) in aqueous (HCl + H3BO3) solution, together with the standard molar enthalpies of formation of MgO(s), H3BO3(s), MgCl2 · 6H2O(s) and H2O(l), the standard molar enthalpy of formation of −(8812 ± 3) kJ · mol−1 of 2MgO · 2B2O3 · MgCl2 · 14H2O was obtained. Thermodynamic properties of this compound were also calculated by group contribution method.  相似文献   

15.
Two new hydrated borates, Zn8[(BO3)3O2(OH)3] and Pb[B5O8(OH)]·1.5H2O, have been prepared by hydrothermal reactions at 170 °C. Single-crystal X-ray structural analyses showed that Zn8[(BO3)3O2(OH)3] crystallizes in a non-centrosymmetric space group R32 with a=8.006(2) Å, c=17.751(2) Å, Z=3 and Pb[B5O8(OH)]·1.5H2O in a triclinic space group P1¯ with a=6.656(2) Å, b=6.714(2) Å, c=10.701(2) Å, α=99.07(2)°, β=93.67(2)°, γ=118.87(1)°, Z=2. Zn8[(BO3)3O2(OH)3] represents a new structure type in which Zn-centered tetrahedra are connected via common vertices leading to helical ribbons 1[Zn8O15(OH)3]17− that pack side by side and are further condensed through sharing oxygen atoms to form a three-dimensional 3[Zn8O11(OH)3]9− framework. The boron atoms are incorporated into the channels in the framework to complete the final structure. Pb[B5O8(OH)]·1.5H2O is a layered compound containing double ring [B5O8(OH)]2− building units that share exocyclic oxygen atoms to form a two-dimensional layer. Symmetry-center-related layers are stacked along the c-axis and held together by interlayer Pb2+ ions and water molecules via electrostatic and hydrogen bonding interactions. The IR spectra further confirmed the existence of both triangular BO3 and OH groups in Zn8[(BO3)3O2(OH)3], and BO3, BO4, OH groups as well as guest water molecules in Pb[B5O8(OH)]·1.5H2O.  相似文献   

16.
The mechanism of cooperative action of commercial fire retardants is interpreted as resulting from specific chemical reaction and phase changes. This investigation focuses on the thermally initiated interactions between two forms of commercially available fire retardant compounds. The fire performance of a polyolefin with a metal hydroxide fire retardant, magnesium hydroxide, can significantly reduce the heat release rate through absorption of heat during conversion to its metal oxide. Formation of water, followed by vaporisation, decreases heat and dilutes volatiles from polymer degradation. The second form of fire retardant compounds are zinc borates (2ZnO·3B2O3·3H2O and 4ZnO·B2O3·H2O), that undergo dehydration with increasing temperature. Differential thermal analysis and wide-angle X-ray spectroscopy indicated that various structural changes occurred during heating. Endothermic transitions were observed for all components, while zinc borate (2ZnO·3B2O3·3H2O) showed an exothermic crystallisation transition at relatively high temperature. The exotherm was modified by the development of a new crystalline phase, magnesium orthoborate (3MgO·B2O3) that formed on reaction with magnesium oxide (MgO) at temperatures greater than 500 °C. Formation of crystalline zinc oxide (ZnO) was also detected. From zinc borate (4ZnO·B2O3·H2O), ZnO was primarily formed. No new crystalline phases were observed in the presence of MgO over the temperature range investigated.  相似文献   

17.
An on-line solution-reaction isoperibol calorimeter has been constructed. The performance of the apparatus was evaluated by measuring the molar enthalpy of solution of KCl in water at 298.15 K. The uncertainty and the inaccurary of the experimental results were within ±0.3% compared with the recommended reference data. Using the calorimeter, the molar enthalpies of reaction for the following two reactions: LaCl3·7H2O(s)+2Hhq(s)+NaAc(s)=La(hq)2Ac(s)+NaCl(s)+2HCl(g)+7H2O(l) and PrCl3·6H2O(s)+2Hhq(s)+NaAc(s)=Pr(hq)2Ac(s)+NaCl(s)+2HCl(g)+6H2O(l), were determined at T=298.15 K, as −(78.3±0.6) and −(97.3±0.5) kJ mol−l, respectively. From the above molar enthalpies of reaction and other auxiliary thermodynamic quantities, the standard molar enthalpies of formation of La(hq)2Ac and Pr(hq)2Ac, at T=298.15 K, have been derived to be −(1535.5±0.7) and −(1536.7±0.6) kJ mol−l, respectively.  相似文献   

18.
2CaO·3B2O3·H2O which has non-linear optical (NLO) property was synthesized under hydrothermal condition and identified by XRD, FTIR and TG as well as by chemical analysis. The molar enthalpy of solution of 2CaO·3B2O3·H2O in HCl·54.572H2O was determined. From a combination of this result with measured enthalpies of solution of H3BO3 in HCl·54.501H2O and of CaO in (HCl+H3BO3) solution, together with the standard molar enthalpies of formation of CaO(s), H3BO3(s), and H2O(l), the standard molar enthalpy of formation of −(5733.7±5.2) kJ mol−1 of 2CaO·3B2O3·H2O was obtained. Thermodynamic properties of this compound were also calculated by a group contribution method.  相似文献   

19.
Using an on-line solution-reaction isoperibol calorimeter, the standard molar enthalpies of reaction for the general thermochemical reaction: LnCl3·6H2O(s) + 2C9H7NO(s) + CH3COONa(s) = Ln(C9H6NO)2(C2H3O2)(s) + NaCl(s) + 2HCl(g) + 6H2O(l) (Ln: Nd, Sm), were determined at T=298.15 K, as  kJ mol−l, respectively. From the mentioned standard molar enthalpies of reaction and other auxiliary thermodynamic quantities, the standard molar enthalpies of formation of Ln(C9H6NO)2(C2H3O2)(s) (Ln: Nd, Sm), at T=298.15 K, have been derived to be: −(1494.7±3.3) and −(1501.5±3.4) kJ mol−l, respectively.  相似文献   

20.
The pure hydrated metalloborophosphate sample, Na2[CuB3P2O11(OH)]·0.67H2O, has been synthesized and characterized by XRD, FT-IR, DTA-TG techniques, and chemical analysis. The molar enthalpies of solution of Na2[CuB3P2O11(OH)]·0.67H2O(s) in 1 mol · dm?3 HCl (aq), of Cu(OH)2 (s) in (HCl + H3BO3) (aq), and of NaH2PO4·2H2O (s) in (HCl + H3BO3 + Cu(OH)2) (aq) were measured, respectively. With the incorporation of the previously determined enthalpy of solution of H3BO3 (s) in 1 mol · dm?3 HCl (aq), together with the use of the standard molar enthalpies of formation for NaH2PO4·2H2O (s), Cu(OH)2 (s), H3BO3 (s), and H2O (l), the standard molar enthalpy of formation of ?(4988.4 ± 2.5) kJ · mol?1 for Na2[CuB3P2O11(OH)]·0.67H2O at T = 298.15 K was obtained on the basis of the appropriate thermochemical cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号