首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Solar cells based on transparent conductive oxides such as ZnO/Cu2O constitute a very advanced way to build high-performance cells. In this work, we are interested in the characterization of the interface through nanoscale modeling based on ab initio approaches (density functional theory, local density approximation, and pseudopotential). This work aims to build a supercell containing a heterojunction ZnO/Cu2O and study the structural properties and the discontinuity of the valence band (band offset) from a semiconducting to another phase. We build a zinc oxide in the wurtzite structure along [0001] on which we place the copper oxide in the hexagonal (CdI2-type) structure. We choose the method of Van de Walle and Martin to calculate the energy offset. This approach fits well the density functional theory. Our calculation of the band offset gives a value that corresponds to other experimental and theoretical values.  相似文献   

3.
Alloy thin films of CdxZn1-xO with different Cd concentrations were grown by sequential ablation of ZnO and CdO targets alternately, using a third-harmonic Q-switched Nd:YAG laser. The Cd concentration in the films, measured by Rutherford back scattering, was varied by controlling the ablation time of the CdO target relative to that of the ZnO. The films were found to be of a highly c-axis-oriented wurtzite phase with high crystalline quality, up to a Cd concentration of approximately 8%, beyond which CdO segregation occurred. The band gap of the CdxZn1-xO thin films was found to decrease monotonically from approximately 3.3 eV to approximately 2.9 eV with increasing x until the onset of CdO segregation. PACS 42.70-a; 78.66Hf; 81.15Fg  相似文献   

4.
5.
Light‐induced degradation (mc‐LID or LeTID) can lead to a severe efficiency loss in multi‐crystalline solar cells. The underlying mechanism clearly distinguishes from known mechanisms as B‐O‐LID and Fe‐B‐LID. Various defect models have been suggested for mc‐LID mainly based on metal impurities, including Cu which is known to cause light‐induced degradation. We investigate mc‐LID sensitive PERC cells that show an efficiency degradation of 15%rel. The weaker degradation of the grain boundaries (GBs) typical for mc‐LID is identified and further investigated from front and rear side with respect to recombination activities. The combination of local electrical measurements (LBIC), target preparation (REM, FIB) and element analysis (EDX, TEM) unveil Cu‐containing precipitates at the rear side of the solar cells. They accumulate at grain boundaries and at the rear surface of the Si‐bulk material where the passivation stack is damaged. We conclude that Cu originates from the cell material and discuss its relation to mc‐LID.

LBIC mapping (EQE at fixed wavelength) of a degraded mc‐Si PERC cell from front and rear side results in qualitatively different appearance of GBs.  相似文献   


6.
Laser-induced fluorescence, Raman and absorption spectroscopy are used to investigate reversible degradation of transmission in PMMA optical fibers. When exposed to 254 nm UV light, optical transmission of PMMA plastic optical fiber in 400-800 nm range shows a significant increase in attenuation for shorter wavelengths. Over a period of 10 days following UV exposure, the transmittance of the plastic fiber recovers to a significant fraction of its pre-exposure value. UV-exposed fiber exhibits strong laser-induced fluorescence with 488 nm argon-ion laser. This fluorescence spans a spectral region between 450 nm and 750 nm with a peak around 580 nm. The fluorescence intensity decreases over several days following UV exposure. Likewise, Raman is also used to investigate degradation process. Freshly UV-exposed fiber shows total absence of Raman spectrum of PMMA. Following UV exposure, recovery of Raman signal over several days is correlated to the recovery of fiber transmittance as well as the decay of laser-induced fluorescence. A widely believed plausible explanation for UV-induced increase of attenuation involves formation of different macro radicals which recombine progressively after UV is stopped. Laser-induced fluorescence over several days is reported here providing direct evidence for molecular-level deterioration and recovery of PMMA.  相似文献   

7.
8.
We demonstrate the processing of a heterojunction solar cell from a purely macroporous silicon (MacPSi) absorber that is generated and separated from a monocrystalline n‐type Cz silicon wafer by means of electrochemical etching. The etching procedure results in straight pores with a diameter of (4.7 ± 0.2) µm and a distance of 8.3 µm. An intrinsic amorphous Si (a‐Si)/p+‐type a‐Si/indium tin oxide (ITO) layer stack is on the front side and an intrinsic a‐Si/n+‐type a‐Si/ITO layer stack is on the rear side. The pores are open when depositing the layers onto the 3.92 cm2‐sized cell. The conductive layers do not cause shunting through the pores. A silicon oxide layer passivates the pore walls. The energy‐conversion efficiency of the (33 ± 2) µm thick cell is 7.2%. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
10.
11.
鲁明  徐晶  黄建微 《中国物理 B》2016,25(9):98402-098402
The lowest energies which make Cu,In,Ga,and Se atoms composing Cu(In,Ga)Se_2(CIGS) material displaced from their lattice sites are evaluated,respectively.The non-ionizing energy loss(NIEL) for electron in CIGS material is calculated analytically using the Mott differential cross section.The relation of the introduction rate(k) of the recombination centers to NIEL is modified,then the values of k at different electron energies are calculated.Degradation modeling of CIGS thin-film solar cells irradiated with various-energy electrons is performed according to the characterization of solar cells and the recombination centers.The validity of the modeling approach is verified by comparison with the experimental data.  相似文献   

12.
The band alignment at the In2S3/Cu2ZnSnS4 heterojunction interface is investigated by X-ray photoemission spectroscopy. In2S3 is thermally evaporated onto the contamination-free polycrystalline Cu2ZnSnS4 surface prepared by magnetron sputtering. The valence band offset is measured to be 0.46 ± 0.1 eV, which matches well with the valance band offset value 0.49 eV calculated using “transitivity” method. The conduction band offset is determined to be 0.82 ± 0.1 eV, indicating a ‘type I’ band alignment at the heterojunction interface.  相似文献   

13.
《Current Applied Physics》2019,19(10):1111-1119
Thin film solar cells based on Cu2ZnSnS4 (CZTS) absorber material suffers from performance issues arising due to the presence of a non-optimal back contact barrier, low carrier lifetime, acceptor/donor point defects in bulk, interface defects at the absorber-buffer junction and grain boundaries within the absorber. We perform comprehensive simulations enumerating the impact of these performance limiting factors on CZTS solar cells. These simulations capture the experimentally observed anomalies in current-voltage (I–V) characteristics and the open-circuit voltage (VOC) pinning in CZTS solar cells. These cause-effect relationships as elaborated in the findings are expected to be of great interest to the experimentalists working in this field.  相似文献   

14.
K A Khan  J F Kos 《Pramana》1986,26(3):277-281
Photocurrent characteristics of the Cu2O/Pt and Cu2O/TiO2 photoelectro-chemical cells have been presented. In aqueous solution, a slow deterioration of power output occurs approximately at the rate of 50% per day. Operation in non-aqueous solutions (acetonitrile and ethanol) also produced a deterioration of power output. However in ethanol, it was found that the deterioration reversed itself and a new cycle of deterioration and rejuvenation began. These suggest that the deterioration is not due to a chemical reduction process at the electrode surface but other factors such as migration of charged defect centres in the depletion layer or chemical reaction on the electrode surface.  相似文献   

15.
In an effort to develop hybrid organic solar cells with improved power conversion efficiency (PCE), devices based on poly (3-hexylthiophene) (P3HT):phenyl C61-butyric acid methyl ester (PCBM) active layer and poly (3,4-ethylenedioxythiophene) (PEDOT):poly (styrenesulfonate) (PSS) buffer layers were prepared. A systematic replacement of PCBM was achieved by introducing nanostructured TiO2 (∼15 nm particle size), dissolved separately in chlorobenzene (CB) and 1,2 –dichlorobenzene (DCB), to the (P3HT:PCBM) active layer while keeping a fixed amount for P3HT. To understand the effect of fullerene replacement with the inorganic metal oxide nanoparticles on different properties of resulting devices, a variety of techniques such as Current–Voltage (J–V) characteristics, Field Emission Scanning Electron Microscopy (FESEM), Atomic Force Microscopy (AFM), Ultravoilet-Visible (UV–Vis) Spectrophotometry and External Quantum Efficiency (EQE) were employed. The addition of TiO2 nanoparticles in the active layer improved the power conversion efficiency (PCE) of P3HT:PCBM devices. The addition of TiO2 nanoparticles using CB as solvent enhanced the absorption in visible region and also introduced a red shift in the absorption spectra. A significant increase in EQE was observed for devices with TiO2 nanoparticles in the active layer. Mixing TiO2 also increased the surface roughness of the active layer where TiO2 nanoparticles were found to agglomerate as their concentration increased relative to fullerene derivative. A complete agglomeration of TiO2 was observed in the absence of PCBM.  相似文献   

16.
The efficiency that a solar cell can reach is ultimately limited by the number of photons absorbed in its active layer. Bulk heterojunction polymer solar cells are fabricated from a stack of thin film layers, each of which is thinner than a single wavelength from an incident photon within its absorption band. One consequence of this thin film layer stack is a strong optical interference between the various layers that can change the quantity of light dissipated in the active layer by 50%. Here we use optical modeling to quantitatively calculate the dissipation in each of the various layers as functions of wavelength and layer thickness. Using this information the loss free short circuit current density can be calculated (Jscmax). Optimization of Jscmax leads to direct improvements in the efficiency of the solar cell through improved light dissipation in the active layer. The optical properties for a P3HT:PCBM active layer and a model Lorentzian low band gap spectrum are optimized and ideal fabrication conditions are reported for these materials. PACS 72.40.+w; 72.80.Le  相似文献   

17.
Solar cells with an SnO2/CuPc/BP/Ag heterojunction are investigated. When the cell was illuminated with white light (E=750 W/m2) through the SnO2, a photoelectric emf of 0.47 V was generated, the short-circuit current was 5 A/m2, and the maximum efficiency for the absorbed light η=0.66%. The barrier capacitance of the heterojunction Cb=1.3·10−3 F/m2; the width of the barrier in the CuPc and BP is W1=7 nm and W2=27 nm, respectively. The photosensitivity range is 400–800 nm. It is concluded that a heterojunction is present at the boundary of the p-CuPc (Eg=2.0 eV) and n-BP (Eg=0.8 eV). Vologod Polytechnical Institute. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 1, pp. 69–72, January, 1997.  相似文献   

18.
陈新亮  陈莉  周忠信  赵颖  张晓丹 《物理学报》2018,67(11):118401-118401
介绍了近年来低成本Cu_2O/ZnO氧化物异质结太阳电池方面的研究进展.应用于光伏器件的吸收层材料Cu_2O是直接带隙半导体材料,天然呈现p型;其原材料丰富,且对环境友好.Cu_2O/ZnO异质结太阳电池结构主要有平面结构和纳米线/纳米棒结构.纳米结构的Cu_2O太阳电池提高了器件的电荷收集作用;通过热氧化Cu片技术获得的具有大晶粒尺寸平面结构Cu_2O吸收层在Cu_2O/ZnO太阳电池应用中展现出了高质量特性.界面缓冲层(如i-ZnO,a-ZTO,Ga_2O_3等)和背表面电场(如p~+-Cu_2O层等)可有效地提高界面处能级匹配和增强载流子输运.10 nm厚度的Ga_2O_3提供了近理想的导带失配,减少了界面复合;Ga_2O_3非常适合作为界面层,其能够有效地提高Cu_2O基太阳电池的开路电压V_(oc)(可达到1.2 V)和光电转换效率.p~+-Cu_2O(如Cu_2O:N和Cu_2O:Na)能够减少器件中背接触电阻和形成电子反射的背表面电场(抑制电子在界面处复合).利用p型Na掺杂Cu_2O(Cu_2O:Na)作为吸收层和Zn_(1-x)Ge_x-O作为n型缓冲层,Cu_2O异质结太阳电池(器件结构:MgF_2/ZnO:Al/Zn_(0.38)Ge_(0.62)-O/Cu_2O:Na)光电转换效率达8.1%.氧化物异质结太阳电池在光伏领域展现出极大的发展潜力.  相似文献   

19.
The ternary blend films have been fabricated via adding 4,4’-N,N’-dicarbazole-biphenyl(CBP,a hole transport material widely used in organic light emitting diodes) into the poly(3-hexylthiophene):[6,6]-phenyl C 61-butyric acid methyl ester(P3HT:PCBM).Despite the wide bandgap(3.1 eV) of the CBP,the solar cell utilizing the optimized P3HT:PCBM:CBP blend film showed an increase of 16% in power conversion efficiency and 25% in short-circuit current than the compared standard P3HT:PCBM blend film.This is attributed to the fact that the addition of the CBP could enhance the aggregation of the P3HT chains and thereby reduce the hole-electron recombination at the interface of P3HT and PCBM.We provide a simple,effective way to improve the performance of P3HT based bulk heterojunction solar cells.  相似文献   

20.
Silver nanospheres (Ag NSs) buffer layers were introduced via a solution casting process to enhance the light absorption in poly (3‐hexylthiophene) (P3HT) and [6,6]‐phenyl‐C61 butyric acid methyl ester (PCBM) bulk heterojunction organic solar cells. These Ag NSs, as surface plasmons, could increase the optical electric field in the photoactive layer whilst simultaneously improving the light scattering. As a result, this buffer layer improves the light absorption of P3HT:PCBM blend and consequently improves the external quantum efficiency (EQE) of organic solar cells. In this work, different sizes of Ag NSs plasmon‐enhanced layer were investigated, with the aim of optimizing the performance of devices. UV‐vis spectrometer measurement demonstrates that the total optical absorption of P3HT:PCBM blend films in the spectral range of 350–650 nm is increased by ~4 and 6% with incorporation of the 20 and 40 nm Ag NSs, respectively. The Jsc was shown to increase by ~21 and 24% for 20 and 40 nm Ag NSs, respectively. This is due to the extra photogenerated excitons by the plasmonic resonance of Ag NSs. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号