首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this paper, we introduce a pair of mutually conjugate multipartite entangled state representations for defining the squeezing operator of entangled multipartite Sn(λ) which involves an n-mode bosonic operator realization of the SU(1,1) Lie algebra. This operator squeezes the multipartite entangled state in a natural way. We discuss the transform properties of aj and \(a_{j}^{\dagger }\) under the operation of Sn(λ) and derive the interaction Hamiltonian which can generate such an evolution. In addition, the corresponding multipartite squeezed vacuum state |λ〉 is obtained. Based on this, the variances of the n-mode quadratures in |λ〉 are evaluated and the violation of the Bell inequality for |λ〉 is examined by using the formalism of Wigner representation.  相似文献   

2.
We find that the Fock space projector |n〉〈n| is a Weyl ordered Laguerre polynomial 2 ::(-)nLn ( 4afa ) e-2afa ::2{\,}^{:}_{:}(-)^{n}L_{n} ( 4a^{\dagger}a ) e^{-2a^{\dagger}a}{\,}^{:}_{:}, where a a is the number operator,:: ::,{}^{:}_{:}\ {}^{:}_{:} denotes the Weyl ordering symbol. This brings convenience to derive the Wigner functions of many other quantum states.  相似文献   

3.
We derive the evolution law of an initial two-mode squeezed vacuum state \( \text {sech}^{2}\lambda e^{a^{\dag }b^{\dagger }\tanh \lambda }\left \vert 00\right \rangle \left \langle 00\right \vert e^{ab\tanh \lambda }\) (a pure state) passing through an a-mode diffusion channel described by the master equation
$$\frac{d\rho \left( t\right) }{dt}=-\kappa \left[ a^{\dagger}a\rho \left( t\right) -a^{\dagger}\rho \left( t\right) a-a\rho \left( t\right) a^{\dagger}+\rho \left( t\right) aa^{\dagger}\right] , $$
since the two-mode squeezed state is simultaneously an entangled state, the final state which emerges from this channel is a two-mode mixed state. Performing partial trace over the b-mode of ρ(t) yields a new chaotic field, \(\rho _{a}\left (t\right ) =\frac {\text {sech}^{2}\lambda }{1+\kappa t \text {sech}^{2}\lambda }:\exp \left [ \frac {- \text {sech}^{2}\lambda }{1+\kappa t\text {sech}^{2}\lambda }a^{\dagger }a \right ] :,\) which exhibits higher temperature and more photon numbers, showing the diffusion effect. Besides, measuring a-mode of ρ(t) to find n photons will result in the collapse of the two-mode system to a new Laguerre polynomial-weighted chaotic state in b-mode, which also exhibits entanglement.
  相似文献   

4.
Using chiral perturbation theory we calculate for pion Compton scattering the isospin-breaking effects induced by the difference between the charged and neutral pion mass. At one-loop order this correction is directly proportional to mp±2-mp02\ensuremath{m_{\pi^\pm}^2-m_{\pi^0}^2} and free of (electromagnetic) counterterm contributions. The differential cross-section for charged pion Compton scattering p-g? p-g\ensuremath{\pi^-\gamma \rightarrow \pi^-\gamma} gets affected (in backward directions) at the level of a few permille. At the same time the isospin-breaking correction leads to a small shift of the pion polarizabilities by d(ap- bp) @ 1.3 ·10-5\ensuremath{\delta(\alpha_\pi- \beta_\pi) \simeq 1.3 \cdot 10^{-5}} fm^3. In case of the low-energy gg? p0p0\ensuremath{\gamma\gamma \rightarrow \pi^0\pi^0} reaction isospin breaking manifests itself through a cusp effect at the p+p-\ensuremath{\pi^+\pi^-} threshold. We give an improved estimate for it based on the empirical p \pi p \pi -scattering length difference a0-a2\ensuremath{a_0-a_2} .  相似文献   

5.
The temperature dependences of magnetic entropy change and refrigerant capacity have been calculated for a maximum field change of Δ H=30 kOe in as-quenched ribbons of the ferromagnetic shape memory alloy Ni50.4Mn34.9In14.7 around the structural reverse martensitic transformation and magnetic transition of austenite. The ribbons crystallize into a single-phase austenite with the L21-type crystal structure and Curie point of 284 K. At 262 K austenite starts its transformation into a 10-layered structurally modulated monoclinic martensite. The first- and second-order character of the structural and magnetic transitions was confirmed by the Arrott plot method. Despite the superior absolute value of the maximum magnetic entropy change obtained in the temperature interval where the reverse martensitic transformation occurs (|\varDelta SMmax|=7.2 J kg-1 K-1)(|\varDelta S_{\mathrm{M}}^{\max}|=7.2\mbox{ J}\,\mbox{kg}^{-1}\,\mbox{K}^{-1}) with respect to that obtained around the ferromagnetic transition of austenite (|\varDelta SMmax|=2.6 J kg-1 K-1)(|\varDelta S_{\mathrm{M}}^{\max}|=2.6\mbox{ J}\,\mbox{kg}^{-1}\,\mbox{K}^{-1}), the large average hysteretic losses due to the effect of the magnetic field on the phase transformation as well as the narrow thermal dependence of the magnetic entropy change make the temperature interval around the ferromagnetic transition of austenite of a higher effective refrigerant capacity (RCmagneff=95J kg-1\mathrm{RC}^{\mathrm{magn}}_{\mathrm{eff}}=95\mbox{J}\,\mbox{kg}^{-1} versus RCstructeff=60J kg-1)\mathrm{RC}^{\mathrm{struct}}_{\mathrm{eff}}=60\mbox{J}\,\mbox{kg}^{-1}).  相似文献   

6.
In this paper, we prove a maximum principle for a frequency localized transport-diffusion equation. As an application, we prove the local well-posedness of the supercritical quasi-geostrophic equation in the critical Besov spaces \mathringB1-a¥,q{\mathring{B}^{1-\alpha}_{\infty,q}}, and global well-posedness of the critical quasi-geostrophic equation in \mathringB0¥,q{\mathring{B}^{0}_{\infty,q}} for all 1 ≤ q < ∞. Here \mathringBs¥,q {\mathring{B}^{s}_{\infty,q} } is the closure of the Schwartz functions in the norm of Bs¥,q{B^{s}_{\infty,q}}.  相似文献   

7.
The weighted total cross section (WTCS) theory has been applied to the electron-H2 collision to obtain excitation, ionisation and dissociation cross section and rate coefficients of the X 1Sg+^{1}\!\Sigma _{g}^{+}, c 3Pu^{3}\!\Pi _{u}, a 3Sg+^{3}\!\Sigma _{g}^{+}, e $^{3}\!\Sigma _{u}^{+}$^{3}\!\Sigma _{u}^{+} and B 1Su+^{1}\!\Sigma _{u}^{+} states. Calculation has been performed in the temperature range 1500 K–15000 K. Rate coefficients are calculated from WTCS assuming Maxwellian energy distribution functions for electrons and heavy particles. Thermal equilibrium results are presented and fitting parameters (a, b and c) are given for each reaction rate coefficient: k(θ) = a (θb) exp(-c/θ).  相似文献   

8.
Using the Dyson-Schwinger and Bethe-Salpeter equations, we calculate the hadronic light-by-light scattering contribution to the anomalous magnetic moment of the muon am\ensuremath a_\mu , using a phenomenological model for the gluon and quark-gluon interaction. We find am=(84 ±13)×10-11\ensuremath a_\mu=(84 \pm 13)\times 10^{-11} for meson exchange, and am = (107 ±2 ±46)×10-11\ensuremath a_\mu = (107 \pm 2 \pm 46)\times 10^{-11} for the quark loop. The former is commensurate with past calculations; the latter much larger due to dressing effects. This leads to a revised estimate of am=116 591 865.0(96.6)×10-11\ensuremath a_\mu=116 591 865.0(96.6)\times 10^{-11} , reducing the difference between theory and experiment to ≃ 1.9s \sigma .  相似文献   

9.
In this paper, we consider the global wellposedness of the 3-D incompressible anisotropic Navier-Stokes equations with initial data in the critical Besov-Sobolev type spaces B{\mathcal{B}} and B-\frac12,\frac124{\mathcal{B}^{-\frac12,\frac12}_4} (see Definitions 1.1 and 1.2 below). In particular, we proved that there exists a positive constant C such that (ANS ν ) has a unique global solution with initial data u0 = (u0h, u03){u_0 = (u_0^h, u_0^3)} which satisfies ||u0h||B exp(\fracCn4 ||u03||B4) £ c0n{\|u_0^h\|_{\mathcal{B}} \exp\bigl(\frac{C}{\nu^4} \|u_0^3\|_{\mathcal{B}}^4\bigr) \leq c_0\nu} or ||u0h||B-\frac12,\frac124 exp(\fracCn4 ||u03||B-\frac12,\frac1244) £ c0n{\|u_0^h\|_{\mathcal{B}^{-\frac12,\frac12}_{4}} \exp \bigl(\frac{C}{\nu^4} \|u_0^3\|_{\mathcal{B}^{-\frac12,\frac12}_{4}}^4\bigr)\leq c_0\nu} for some c 0 sufficiently small. To overcome the difficulty that Gronwall’s inequality can not be applied in the framework of Chemin-Lerner type spaces, [(Lpt)\tilde](B){\widetilde{L^p_t}(\mathcal{B})}, we introduced here sort of weighted Chemin-Lerner type spaces, [(L2t, f)\tilde](B){\widetilde{L^2_{t, f}}(\mathcal{B})} for some apropriate L 1 function f(t).  相似文献   

10.
In this article, we assume that there exist scalar D*[`(D)]*{D}^{\ast}{\bar {D}}^{\ast}, Ds*[`(D)]s*{D}_{s}^{\ast}{\bar{D}}_{s}^{\ast}, B*[`(B)]*{B}^{\ast}{\bar {B}}^{\ast} and Bs*[`(B)]s*{B}_{s}^{\ast}{\bar{B}}_{s}^{\ast} molecular states, and study their masses using the QCD sum rules. The numerical results indicate that the masses are about (250–500) MeV above the corresponding D *–[`(D)]*{\bar{D}}^{\ast}, D s *–[`(D)]s*{\bar {D}}_{s}^{\ast}, B *–[`(B)]*{\bar{B}}^{\ast} and B s *–[`(B)]s*{\bar {B}}_{s}^{\ast} thresholds, the Y(4140) is unlikely a scalar Ds*[`(D)]s*{D}_{s}^{\ast}{\bar{D}}_{s}^{\ast} molecular state. The scalar D*[`(D)]*D^{\ast}{\bar{D}}^{\ast}, Ds*[`(D)]s*D_{s}^{\ast}{\bar{D}}_{s}^{\ast}, B*[`(B)]*B^{\ast}{\bar{B}}^{\ast} and Bs*[`(B)]s*B_{s}^{\ast}{\bar{B}}_{s}^{\ast} molecular states maybe not exist, while the scalar D*[`(D)]¢*{D'}^{\ast}{\bar{D}}^{\prime\ast}, Ds¢*[`(D)]s¢*{D}_{s}^{\prime\ast}{\bar{D}}_{s}^{\prime\ast}, B¢*[`(B)]¢*{B}^{\prime\ast}{\bar{B}}^{\prime\ast} and Bs¢*[`(B)]s¢*{B}_{s}^{\prime\ast}{\bar{B}}_{s}^{\prime\ast} molecular states maybe exist.  相似文献   

11.
Measurements of α s, the coupling strength of the Strong Interaction between quarks and gluons, are summarised and an updated value of the world average of as(MZ0)\alpha_{\mathrm{s}}(M_{\mathrm{Z}^{0}}) is derived. Special emphasis is laid on the most recent determinations of α s. These are obtained from τ-decays, from global fits of electroweak precision data and from measurements of the proton structure function F2, which are based on perturbative QCD calculations up to O(as4)\mathcal{O}(\alpha_{\mathrm{s}}^{4}); from hadronic event shapes and jet production in e+e annihilation, based on O(as3)\mathcal{O}(\alpha_{\mathrm{s}}^{3}) QCD; from jet production in deep inelastic scattering and from ϒ decays, based on O(as2)\mathcal{O}(\alpha_{\mathrm{s}}^{2}) QCD; and from heavy quarkonia based on unquenched QCD lattice calculations. A pragmatic method is chosen to obtain the world average and an estimate of its overall uncertainty, resulting in
as(MZ0)=0.1184±0.0007.\alpha_\mathrm{s}(M_{\mathrm{Z}^0})=0.1184\pm 0.0007.  相似文献   

12.
Making the assumption of explicit isospin violation arising from f 0(980)-a 0(980) mixing, we take the point of view that the scalar mesons f 0(980) and a 0(980) have both strange and non-strange quark-antiquark components and evaluate the strong coupling constants within the framework of the light-cone QCD sum rules approach. The large strong scalar-KK couplings through both the and components , , and will support the hadronic dressing mechanism; furthermore, in spite of the constituent structure differences between the f 0(980) and a 0(980) mesons, the strange components have larger strong coupling constants with the K + K - state than the corresponding non-strange ones, and . From the existing controversial values, we cannot reach a general consensus on the strong coupling constants and the mixing angles.Received: 9 January 2004, Revised: 23 July 2004, Published online: 2 September 2004  相似文献   

13.
The correction to anomalous magnetic momentum muon from the light by light scattering diagram with intermediate pion is calculated in framework nonlocal chiral quark model. To fix the model parameters it is suggested to use the values of mass and two photon width of the neutral pion. The value of the correction is in region am p0 , LbL = (5.05 ±0.03) ×10 - 10a_\mu ^{\pi ^0 , LbL} = (5.05 \pm 0.03) \times 10^{ - 10} for different set of model parameters.  相似文献   

14.
We make the cosmological constant, Λ, into a field and restrict the variations of the action with respect to it by causality. This creates an additional Einstein constraint equation. It restricts the solutions of the standard Einstein equations and is the requirement that the cosmological wave function possess a classical limit. When applied to the Friedmann metric it requires that the cosmological constant measured today, t U , be L ~ tU-2 ~ 10-122{\Lambda \sim t_{U}^{-2} \sim 10^{-122}} , as observed. This is the classical value of Λ that dominates the wave function of the universe. Our new field equation determines Λ in terms of other astronomically measurable quantities. Specifically, it predicts that the spatial curvature parameter of the universe is Wk0 o -k/a02H2=-0.0055{\Omega _{\mathrm{k0}} \equiv -k/a_{0}^{2}H^{2}=-0.0055} , which will be tested by Planck Satellite data. Our theory also creates a new picture of self-consistent quantum cosmological history.  相似文献   

15.
The complex impedance of the Ag2ZnP2O7 compound has been investigated in the temperature range 419–557 K and in the frequency range 200 Hz–5 MHz. The Z′ and Z′ versus frequency plots are well fitted to an equivalent circuit model. Dielectric data were analyzed using complex electrical modulus M* for the sample at various temperatures. The modulus plot can be characterized by full width at half-height or in terms of a non-exponential decay function f( \textt ) = exp( - \textt/t )b \phi \left( {\text{t}} \right) = \exp {\left( { - {\text{t}}/\tau } \right)^\beta } . The frequency dependence of the conductivity is interpreted in terms of Jonscher’s law: s( w) = s\textdc + \textAwn \sigma \left( \omega \right) = {\sigma_{\text{dc}}} + {\text{A}}{\omega^n} . The conductivity σ dc follows the Arrhenius relation. The near value of activation energies obtained from the analysis of M″, conductivity data, and equivalent circuit confirms that the transport is through ion hopping mechanism dominated by the motion of the Ag+ ions in the structure of the investigated material.  相似文献   

16.
In Deng et al. (Eur. Phys. J. C 70:113, 2010), we have dealt with the production of the two color-singlet S-wave (c[`(b)])(c\bar{b})-quarkonium states Bc(|(c[`(b)])1[1S0]?)B_{c}(|(c\bar {b})_{\mathbf{1}}[^{1}S_{0}]\rangle) and B*c(|(c[`(b)])1[3S1]?)B^{*}_{c}(|(c\bar{b})_{\mathbf{1}}[^{3}S_{1}]\rangle) through the Z 0 boson decays. As an important sequential work, we make a further discussion on the production of the more complicated P-wave excited (c[`(b)])(c\bar{b})-quarkonium states, i.e. |(c[`(b)])1[1P1]?|(c\bar{b})_{\mathbf{1}}[^{1}P_{1}]\rangle and |(c[`(b)])1[3PJ]?|(c\bar{b})_{\mathbf{1}}[^{3}P_{J}]\rangle (with J=(1,2,3)). More over, we also calculate the channel with the two color-octet quarkonium states |(c[`(b)])8[1S0]g?|(c\bar{b})_{\mathbf{8}}[^{1}S_{0}]g\rangle and |(c[`(b)])8[3S1]g?|(c\bar{b})_{\mathbf{8}}[^{3}S_{1}]g\rangle, whose contributions to the decay width maybe at the same order of magnitude as that of the color-singlet P-wave states according to the naive nonrelativistic quantum chromodynamics scaling rules. The P-wave states shall provide sizable contributions to the B c production, whose decay width is about 20% of the total decay width \varGamma Z0? Bc\varGamma _{Z^{0}\to B_{c}}. After summing up all the mentioned (c[`(b)])(c\bar {b})-quarkonium states’ contributions, we obtain \varGamma Z0? Bc=235.9+352.8-122.0\varGamma _{Z^{0}\to B_{c}}=235.9^{+352.8}_{-122.0} KeV, where the errors are caused by the main sources of uncertainty.  相似文献   

17.
We study the small-x behaviour of the polarized photon structure function F3gF_3^{\gamma}, measuring the gluon transversity distribution, in the leading logarithmic approximation of perturbative QCD. There are two contributions, both arising from two-gluon exchange. The leading contribution to small-x is related to the BFKL pomeron and behaves like x-1-w2x^{-1-\omega_2}, w2 = O(aS)\omega_2 ={\cal O}(\alpha_S). The other contribution includes in particular the ones summed by the DGLAP equation and behaves like x1-w0(+)x^{1-\omega_0^{(+)}}, w0(+) = O(?{aS})\omega_0^{(+)} = {\cal O}(\sqrt{\alpha_S}).  相似文献   

18.
We use the Markov Chain Monte Carlo method to investigate a global constraints on the modified Chaplygin gas (MCG) model as the unification of dark matter and dark energy from the latest observational data: the Union2 dataset of type supernovae Ia (SNIa), the observational Hubble data (OHD), the cluster X-ray gas mass fraction, the baryon acoustic oscillation (BAO), and the cosmic microwave background (CMB) data. In a flat universe, the constraint results for MCG model are, Wbh2 = 0.02263+0.00184-0.00162 (1s)+0.00213-0.00195 (2s){\Omega_{b}h^{2}\,{=}\,0.02263^{+0.00184}_{-0.00162} (1\sigma)^{+0.00213}_{-0.00195} (2\sigma)}, Bs = 0.7788+0.0736-0.0723(1s)+0.0918-0.0904 (2s){B_{s}\,{=}\,0.7788^{+0.0736}_{-0.0723}(1\sigma)^{+0.0918}_{-0.0904} (2\sigma)}, a = 0.1079+0.3397-0.2539 (1s)+0.4678-0.2911 (2s){\alpha\,{=}\,0.1079^{+0.3397}_{-0.2539} (1\sigma)^{+0.4678}_{-0.2911} (2\sigma)}, B = 0.00189+0.00583-0.00756(1s)+0.00660-0.00915 (2s){B\,{=}\,0.00189^{+0.00583}_{-0.00756}(1\sigma)^{+0.00660}_{-0.00915} (2\sigma)}, and H0=70.711+4.188-3.142 (1s)+5.281-4.149(2s){H_{0}=70.711^{+4.188}_{-3.142} (1\sigma)^{+5.281}_{-4.149}(2\sigma)}.  相似文献   

19.
This paper considers Hardy–Lieb–Thirring inequalities for higher order differential operators. A result for general fourth-order operators on the half-line is developed, and the trace inequality
tr( (-D)2 - CHRd,2\frac1|x|4 - V(x) )-gCgò\mathbbRd V(x)+g+ \fracd4 dx,     g 3 1 - \frac d 4,\mathrm{tr}\left( (-\Delta)^2 - C^{\mathrm{HR}}_{d,2}\frac{1}{|x|^4} - V(x) \right)_-^{\gamma}\leq C_\gamma\int\limits_{\mathbb{R}^d} V(x)_+^{\gamma + \frac{d}{4}}\,\mathrm{d}x, \quad \gamma \geq 1 - \frac d 4,  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号