首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The chemical and the phase compositions of multilayer nanoperiodic SiO x /ZrO2 structures prepared by vacuum evaporation from separated sources and subjected to high-temperature annealing have been studied by X-ray photoelectron spectroscopy with a layer-by-layer etching. It is found that, under deposition conditions used, the silicon suboxide layers had the stoichiometric coefficient x ~1.8 and the zirconium-containing layers were the stoichiometric zirconium dioxide. It was found, using X-ray photoelectron spectroscopy, that annealing of the multilayer structures at 1000°C leads to mutual diffusion of the components and chemical interaction between ZrO2 and SiO x with predominant formation of zirconium silicate at heteroboundaries of the structures. The SiO x layers of the annealed nanostructures contained ~5 at % elemental silicon as a result of the phase separation and the formation of fine silicon nanocrystals.  相似文献   

2.
Structure of smooth hydrocarbon CD x films with a high deuterium ratio x ~ 0.5 redeposited from T-10 tokamak D-plasma discharges (NRC Kurchatov Institute, Moscow) has been studied. For the first time, small and wide angle X-ray scattering technique using synchrotron radiation and neutron diffraction have been employed. A fractal structure of CD x films is found to consist of mass-fractals with rough border, surface fractals (with rough surface), plane scatterers and linear chains forming a branched and highly cross-linked 3D carbon network. The found fractals, including sp2 clusters, are of typical size ~1.60 nm. They include a C13 fragment consisting of three interconnected aromatic rings forming a minimal fractal sp2 aggregate 9 × C13. These graphene-like sp2 clusters are interconnected and form a 3D lattice which can be alternatively interpreted as a highly defective graphene layer with a large concentration of vacancies. The unsaturated chemical bonds are filled with D, H atoms, linear sp2 C=C, C=O, and sp3 structural elements like C-C, C-H(D), C-D2,3, C-O, O-H, COOH, C x D(H) y found earlier from the infrared spectra of CD x films, which are binding linear elements of a carbon network. The amorphous structure of CD x films has been confirmed by the results of earlier fractal structure modeling, as well as by researches with X-ray photoelectron spectroscopy which allow finding a definite similarity with the electron structure of their model analogues — polymeric a-C:H and a-C:D films with a disordered carbon network consisting of atoms in sp3 + sp2 states.  相似文献   

3.
LSDA + U + SO calculations of the electronic structure of helicoidal Fe1 - xCo x Si ferromagnets within the virtual crystal approximation have been supplemented with the consideration of the Dzyaloshinski-Moriya interaction and ferromagnetic fluctuations of the spin density of collective d electrons with the Hubbard interactions at Fe and Co atoms randomly distributed over sites. The magnetic-state equation in the developed model describes helicoidal ferromagnetism and its disappearance accompanied by the occurrence of a maximum of uniform magnetic susceptibility at temperature T C and chiral fluctuations of the local magnetization at T > T C . The reasons why the magnetic contribution to the specific heat at the magnetic phase transition changes monotonically and the volume coefficient of thermal expansion (VCTE) at low temperatures is negative and has a wide minimum near T C have been investigated. It is shown that the VCTE changes sign when passing to the paramagnetic state (at temperature T S ).  相似文献   

4.
The atomic and electronic structures of metal-rich noncentrosymmetric zirconium oxide synthesized by the ion beam sputtering of a metallic target in an oxygen atmosphere has been studied by X-ray photoelectron spectroscopy, Raman scattering, spectral ellipsometry, and quantum-chemical simulation. It has been established that ZrOx < 2 consists of ZrO2, metallic Zr, and zirconium suboxides ZrOy. The stoichiometry parameter of ZrOy has been estimated. It has been shown that the optical properties of ZrOx < 2 are determined by metallic Zr. A model of fluctuation of the width of the band gap and a potential for electrons and holes in ZrOx < 2 based on spatial fluctuations of the chemical composition has been proposed.  相似文献   

5.
The energies of formation of vacancies in the carbon and silicon sublattices, the independent elastic constants, the all-round compression, shear and Young’s moduli, and the anisotropy coefficients are determined for the complete and nonstoichiometric cubic phases of 3C-SixCy (x, y = 1.0–0.75) by ab initio methods of the band theory. In the formalism of the density functional perturbation theory (DFPT), the phonon dispersion dependences are obtained for these phases (the comparison with the experiment is given for the complete phase). It is shown that the mechanical characteristics of the phases become strongly anisotropic upon the transition from 3C-SiC0.875 to 3C-SiC0.75. It is established from the analysis of the phonon dispersion curves that the 3C-SiC0.875 and 3C-SiC0.75 phases, in contrast to the complete 3C-SiC phase, are dynamically unstable at T = 0 K.  相似文献   

6.
Results of a comprehensive study of the interface interaction of a nanostructured CuOx and multiwalled carbon nanotubes (MWCNTs) in CuOx/MWCNT nanocomposite by X-ray absorption spectroscopy (XANES, NEXAFS) and X-ray photoelectron spectroscopy (XPS) methods using a synchrotron radiation are presented. It is established that a nanostructured CuOx in CuOx/MWCNT nanocomposite is predominantly formed by CuO and has the form of flakelike particles 200–500 nm in size uniformly dispersed over an array of nanotubes. A chemical interaction of CuOx and nanotubes with formation of covalent carbon–oxygen bonds, which does not lead to a significant destruction of the outer layers of carbon nanotubes, is observed at the interfaces of the nanocomposite.  相似文献   

7.
The magnetorefractive effect in Fe(t x , Å)/Cr(10 Å) samples grown by molecular-beam epitaxy with a variable thickness of the iron layer (superlattices, cluster-layered nanostructures) has been studied in the IR region (λ = 2–13 µm) in s and p polarizations of light. The magnetoresistive effect in a dc magnetic field, H ≤ 32 kOe, has been measured on the same samples. The iron layer thickness required for the magnetorefractive response to appear has been found to be t Fe ≥ 3 Å. The correlation between the magnitude of the magnetorefractive effect in the mid-IR region and magnetoresistance has been discussed.  相似文献   

8.
The magnetic and elastic properties of the Bi1-xCaxMnO3 manganites are studied. The phase transformations revealed are ferromagnet-spin glass (x≥0.15) and spin glass-charge-ordered antiferromagnet (x≥0.25). The ferromagnetic state is characterized by ordering of the Mn3+d x 2-y orbitals. It is suggested that thespin glass state originates from local static Jahn-Teller distortions. The antiferromagnetic charge-ordered and the spin-glass disordered phases coexist in samples with 0.25<x<0.32, which may be due to the charge order-disorder phase transformation being martensitic in character. The magnetic phase diagram is constructed.  相似文献   

9.
The effect of low-temperature annealing on the magnetization curve of YBa2Cu3O6 + x ceramics in the superconducting state (x ≈ 0.9) is investigated. When the annealing time is fairly long, the field dependence of magnetic moment M exhibits a feature in the form of a plateau, where the value of M remains almost constant. The evolution of this feature in the magnetization curves of annealed samples with annealing time and temperature is studied. It is assumed that low-temperature annealing gives rise to metastable ferromagnetic clusters in YBa2Cu3O6 + x ceramics, the contribution of which to the magnetic moment accounts for the feature in the magnetization curves of the annealed samples.  相似文献   

10.
The heights of barriers for the injection of electrons and holes from silicon in SiOx have been calculated in the tight binding approximation without any fitting parameters. The dependence of the electronic structure of silicon-enriched amorphous silicon oxide SiOx on the degree of enrichment has been found. The calculations have been performed with the parameterization of the matrix elements of the tight binding Hamiltonian proposed in our previous work. This parameter involves a change in the localization region of valence electrons of an insulated atom at its introduction into a solid. It has been shown that the inclusion of this change makes it possible to calculate the electronic structure without fitting parameters using the parameters of individual atoms as initial data. This circumstance allows the calculation in the absolute energy scale with zero corresponding to the energy of the electron in vacuum.  相似文献   

11.
The capacitance-voltage and current-voltage characteristics of the n-CdS/p-CdTe heterosystem are investigated. Analysis of these characteristics demonstrates that the CdTe1?x S x solid solution formed at the n-CdS/p-CdTe heterointerface is inhomogeneous in both the conductivity and composition. The thickness of solid solutions is estimated from the capacitance-voltage characteristics. It is shown that, for the n-CdS/p-CdTe heterosystem, the current-voltage characteristic in the current density range 10?8-10?5 A cm?2 is governed by the thermal electron emission, whereas the current in the heterostructure at current densities in the range 10?4-10?2 A cm?2 is limited by recombination of charge carriers in the electroneutral region of the CdTe1?x S x solid solution. The lifetime and the diffusion length of minority charge carriers in the CdTe1?x S x solid solution and the surface recombination rate at the interface between the CdS layer and the CdTe1?x S x solid solution are determined. It is demonstrated that the n-CdS/p-CdTe heterostructure operates as a p-i-n structure in which CdTe is a p layer, CdTe1?x S x is an i layer, and CdS is an n layer.  相似文献   

12.
In this work, the diamagnetic susceptibility and the bindingenergy of a hydrogenic donor impurity both in the parabolic andnon-parabolic conduction band models have been calculated withinthe effective mass approximation for a V-grooveGaAs/Ga1- x Al x As quantum wire. According to the resultsobtained from the present work reveals that (i) the value ofdiamagnetic susceptibility due to the non-parabolicity effect ishigher than that of parabolicity effect; (ii) the values ofdiamagnetic susceptibility and binding energy due to thenon-parabolicity effect is not appreciable at low Al molefractions; (iii) the diamagnetic susceptibility approaches to thebulk value both in L \(\rightarrow\) 0 or L \(\rightarrow\) ; (iv)the effect of non-parabolocity is not appreciable in the bindingenergy and energy dependent effective mass, for energies lowerthan 50 MeV.  相似文献   

13.
The electron and spin structure of thick smooth hydrocarbon CD x films (“flakes”) with a high relative deuterium concentration of x ~ 0.5, redeposited from deuterium plasma discharge onto the walls of the vacuum chamber of the T-10 tokamak and containing ~1 at % of 3d-metal impurities due to erosion of the chamber walls, are studied using electron paramagnetic resonance (EPR) and photoluminescence (PL). The resulting spectra are compared for the first time to the EPR and photoluminescence spectra of polymer (soft) a-C:H(D) films (H(D)/C ~ 0.5), which are considered model analogues of smooth CD x films. A certain similarity of the CD x films with a-C:H films was found in the electronic structure of the valence band. At the same time, the differences in the EPR and photoluminescence spectra were observed due to the presence of 3d-metal impurities in the CD x samples, contributing to the conversion of sp 3sp 2 in the formation of films in the tokamak and upon heating and thermal desorption. An impurity of, presumably, 3d metals was detected for the first time by EPR in the a-C:H films in an amount of approximately 0.2 ppm, related to the evaporation of graphite.  相似文献   

14.
15.
The magnetic structures that form in La1–xRxMn2Si2 (R = Sm, Tb) layered compounds with various concentrations x have been determined by magnetic neutron diffraction and magnetic measurements, and the magnetic phase diagrams have been built. It is shown that the formation of the magnetic structures is dependent not only on exchange interactions, but also on the type of the magnetic anisotropy of a rare-earth atom. It is found that, in La1–xTbxMn2Si2 compounds with 0.2 < x < 0.5, the competition of the Tb–Mn and Mn–Mn interlayer exchange interactions and the existence of a strong uniaxial magnetic anisotropy in the Mn and Tb sublattices leads to the frustrated magnetic state and prevents the formation of the long-range magnetic order in the Tb sublattice.  相似文献   

16.
The temperature and field dependences of the magnetization of a single crystal of a new class of layered cobaltites, TbBaCo4O7+x , with a structure containing a Kagomé lattice and a triangular lattice were measured. The measurements were performed on a SQUID magnetometer at temperatures in the range 2–300 K and in magnetic fields of up to 55 kOe for two field orientations. The anisotropy of the magnetization was studied, and the presence of antiferromagnetic ordering in fields H < H c and a weak magnetic-field-induced (H > H c ) ferromagnetic component in the low-temperature range was demonstrated. The magnetic characteristics of the initial TbBaCo4O7+x single crystal and the single crystal annealed in an O2 atmosphere were compared.  相似文献   

17.
Tm x Cu3V4O12, a perovskite-like oxide (space group, Im-3; Z = 2; a = 7.279–7.293 Å) containing vacancies in its cationic sublattice, was obtained barothermally (P = 7.0–9.0 GPa, t = 1000–1100°C) for the first time. The temperature dependences on the electrical resistivity (10–300 K) and the magnetic susceptibility (0–300 K) were investigated. It was shown that the oxide Tm x Cu3V4O12 is characterized by metal-type conductivity and paramagnetic properties.  相似文献   

18.
The effect of white and UV radiation on the phase composition of amorphous CN x films are studied by X-ray diffraction analysis and visible-range spectroscopy. The films have variable-range atomic order and consist of amorphous graphite clusters (30 Å) crystalline clusters (50–100 Å) of graphite, diamond, and carbon nitride phases; and intercluster medium with long-range (1–2 Å) atomic order. It is shown that irradiation of the films by white light facilitates the growth of fine graphite clusters. Irradiation by UV light suppresses the growth of the graphite and carbon nitride phases, favoring the growth of the diamond phase (1.5%). It is demonstrated that a change in the mesoscopic phase composition of the CN x films causes a change in the energy gap width in the visible range from E g = 0.75 eV for the films irradiated by white light to E g = 1.75 eV for those exposed to UV radiation.  相似文献   

19.
Influence of temperature and magnetic field H on magnetism of spherical Gd nanoparticles of different sizes (89, 63, 47, 28, and 18 nm) was studied in the temperature range 250 K < T < 325 K. The particles were obtained by metal vapor condensation in the flow of helium. The particles with d = 18 nm did not show a magnetic transition; their structure is a combination of two cubic phases (FCC1 and FCC2). Large particles remained in the HCP phase and had an admixture of the FCC1 phase, the amount of which decreased as the particle sizes increased; magnetic transition took place at T c = 293 K. The admixture of O2 did not alter the structure but decreased the magnetization σ and magnetic permeability μ. An orientation transition in polycrystalline gadolinium initiated by the magnetic field H was proved in an experiment. The orientation transition in Gd particles smaller than 63 nm, the magnetic structure of which is close to the single-domain structure, occurred near T c without the influence of H.  相似文献   

20.
Transmission electron microscopy has been used to study ball milled and H cycled NaAlH4 with 10 mol% TiCl3. Isolated from the main phases in this hydrogen storage system, nanocrystalline aggregates of fcc TiH x (0≤x<0.67) were found. The value of x was determined based on the assumption of a linear increase of the TiH x lattice parameter by increasing H content. The size of the TiH x crystallites was in the range 10 to 20 nm, and the lattice parameter decreased from 4.22 Å in TiH0.67 to 4.10 Å in pure fcc Ti. Non-equilibrium ball milling and subsequent H cycling in combination with a small crystallite size are believed to make the TiH x phase stable. The present results are the first observations of fcc TiH x with low hydrogen content, and the measured fcc lattice parameter of Ti matches first-principles calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号