首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 78 毫秒
1.
“超浓盐酸”介质中钯微乳萃取行为   总被引:1,自引:0,他引:1  
采用多种分子谱学的表征手段, 研究了萃钯有机相中由于酸的共萃导致溶液微观聚集态结构的变化. 研究结果表明, 与高酸度盐酸水溶液平衡后的TBP载钯有机相微乳水团中形成了浓度远大于常规饱和浓盐酸的“超浓盐酸”; 微乳水团内H+和Cl-的大量聚集增浓对Pd离子的络合配位状态产生影响, H+参与了Pd离子配位状态的转变; 有机相“超浓盐酸”形成后, 使得微乳水团中大量存在的H+有可能参与调控水团中各种HmPdClnz+络合离子配位状态的相对含量. 被H+活化的TBP表面活性剂与钯离子的各种配位状态的匹配程度最终决定了钯的萃取行为.  相似文献   

2.
叔胺N235萃取盐酸时酸度对产生第三相的影响   总被引:2,自引:2,他引:2  
本文研究了三烷基胺N235-C12H26-HCl萃取体系,在无改性剂TBP(磷酸三丁酯)和含20% TBP两种情况下,初始HCl浓度对HCl萃取率、第三相体积和第三相电导率的影响。发现无TBP时,萃取入有机相的HCl按两阶段形式进入第三相。在nHCl(o)/nN235(o)≤1时,形成的第三相萃合物为R3N·(H2O)m·HCl(m<3)。在nHCl(o)/nN235(o)>1时,萃合物组成接近R3N·(H2O)m·2HCl。第三相的体积及电导率变化均在nHCl(o)/nN235(o)=1附近出现拐点。有机相含20% TBP后,在cHCl(init)≤4.0 mol·L-1范围不出现第三相,cHCl(init)≥5.0 mol·L-1则再次出现第三相,此第三相的组成推测为R3N·(H2O)m·HCl及TBP·(H2O)m·HCl两种离子溶液的混合物。  相似文献   

3.
通过测定萃取有机相的电导率变化研究叔胺N235(三烷基胺)萃取盐酸体系中第三相的形成及改性剂消除第三相的作用机理。实验结果表明,无改性剂时萃取体系在各种条件下均出现第三相。第三相组成为R3NH (H2O)3·Cl-,具有导电性。加改性剂TBP(磷酸三丁酯)后,第三相消失。本文认为改性剂TBP消除第三相的作用机理是TBP能够将萃合物R3NH (H2O)3·Cl-拆分为可溶于惰性稀释剂的R3NH (H2O)3·O=P(OC4H9)3大阳离子,Cl-离子则以抗衡离子分散于稀释剂中。  相似文献   

4.
N235萃取HCl体系中TBP消除第三相的作用机理   总被引:2,自引:2,他引:2  
通过测定萃取有机相的电导率变化研究叔胺N235(三烷基胺)萃取盐酸体系中第三相的形成及改性剂消除第三相的作用机理。实验结果表明,无改性剂时萃取体系在各种条件下均出现第三相。第三相组成为R3NH+(H2O)3·Cl-,具有导电性。加改性剂TBP(磷酸三丁酯)后,第三相消失。本文认为改性剂TBP消除第三相的作用机理是TBP能够将萃合物R3NH+(H2O)3·Cl-拆分为可溶于惰性稀释剂的R3NH+(H2O)3·O=P(OC4H9)3大阳离子,Cl-离子则以抗衡离子分散于稀释剂中。  相似文献   

5.
超分子化合物[H2(C18H18N2O2)](SCN)由Fe(NO3)3·9H2O,KSCN和1,4-双(4-吡啶基甲基苯基醚)反应得到。通过X射线衍射仪测得该化合物是通过N┈H—N,S┈H—C(C5H5N)及S┈H—C(亚甲基CH2)三种氢键而形成的二维平面网状结构。用Z扫描法对该超分子在DMF溶液中的三阶非线性光学性质进行研究,发现它具有强的三阶非线性折射性能,三阶非线性超极化率X^(3)=6.27×10^-12esu.  相似文献   

6.
Solid‐phase extraction based on humic acid bonded silica followed by gas chromatography with electron capture detection was developed to determine fipronil and its metabolites in edible oil. To achieve the best extraction performance, we systematically investigated a series of solid‐phase extraction parameters. Under the optimized conditions, the method was validated according to linearity, recovery, and precision. Good linearities were obtained with R2 more than 0.9996 for all analytes. The limits of detection were between 0.3 and 0.5 ng/g, and the recoveries ranged from 83.1 to 104.0% at three spiked concentrations with intra‐ and interday relative standard deviation values less than 8.7%. Finally, the proposed method was applied to determine fipronil and its metabolites in 11 edible oil samples taken from Wuhan markets. Fipronil was detectable in four samples with concentrations ranging from 3.0 to 5.2 ng/g. In China, the maximum residue limits of fipronil in some vegetables and maize are 20 and 100 ng/g (GB/T 2763‐2014), respectively. The residues of fipronil and its metabolites in commercial edible oils might exhibit some potential threat to human health as a result of high consumption of edible oil as part of daily intake.  相似文献   

7.
A novel core–shell magnetic surface molecularly imprinted polymer with folic acid as a template was successfully synthesized by the sol–gel method. To generate Lewis acid sites in the silica matrix for the interaction of the metal coordinate with the template, 3‐aminopropyltriethoxysilane was used as a functional monomer, tetraethyl orthosilicate as a cross‐linker, and aluminum ions as a dopant. The magnetite encapsulated by the silica shell plays an important role as a magnetic‐coated polymer. The synthesized product was characterized by powder X‐ray diffraction, scanning electron microscopy, transmission electron microscopy, and FTIR and UV/Vis spectroscopy. The powder X‐ray diffraction patterns, FTIR and UV/Vis spectra confirmed the characteristics of the as‐prepared silica coated magnetite and folic acid molecularly imprinted polymer. It was successfully applied for magnetic solid‐phase extraction prior to the determination of folates in tomato samples using high‐performance liquid chromatography with photodiode array detection. The detection limit of the proposed method was 1.67 μg/L, and results were satisfactory, with a relative standard deviation of < 3.94%.  相似文献   

8.
We report the fabrication of an anion‐exchange monolithic column in a stainless‐steel chromatographic column (10 mm × 2.1 mm i.d.) using [2‐(acryloyloxy) ethyl]trimethylammonium chloride as the monomer and ethylene dimethacrylate as the crosslinker. The prepared monolith was developed as the adsorbent for the on‐line solid‐phase extraction of salicylic acid in various animal‐origin foodstuffs combined with liquid chromatography and tandem mass spectrometry. The monolith was characterized by using Fourier transform infrared spectroscopy, scanning electron microscopy, nitrogen adsorption analysis, and elemental analysis. Potential factors affecting the on‐line solid‐phase extraction and liquid chromatography with tandem mass spectrometry analysis were studied in detail. Under the optimized conditions, the total analysis time including cleanup and liquid chromatography with tandem mass spectrometry separation was 17 min. The developed method gave the linear range of 15–750 μg/kg, detection limits (S/N = 3) of 5 μg/kg, and quantification limits (S/N = 10) of 15 μg/kg. The recoveries obtained by spiking 10, 20, and 100 μg/kg of salicylic acid in the animal‐origin food samples were in the range of 85.2–98.4%. In addition, the monolith was stable enough for 550 extraction cycles with the precision of peak area ≤11.6%.  相似文献   

9.
Polydopamine‐coated Fe3O4 magnetic nanoparticles synthesized through a facile solvothermal reaction and the self‐polymerization of dopamine have been employed as a magnetic solid‐phase extraction sorbent to enrich four phenolic compounds, bisphenol A, tetrabromobisphenol A, (S)‐1,1′‐bi‐2‐naphthol and 2,4,6‐tribromophenol, from environmental waters followed by high‐performance liquid chromatographic detection. Various parameters of the extraction were optimized, including the pH of the sample matrix, the amount of polydopamine‐coated Fe3O4 sorbent, the adsorption time, the enrichment factor of analytes, the elution solvent, and the reusability of the nanoparticles sorbent. The recoveries of these phenols in spiked water samples were 62.0–112.0% with relative standard deviations of 0.8–7.7%, indicating the good reliability of the magnetic solid‐phase extraction with high‐performance liquid chromatography method. In addition, the extraction characteristics of the magnetic polydopamine‐coated Fe3O4 nanoparticles were elucidated comprehensively. It is found that there are hydrophobic, π–π stacking and hydrogen bonding interactions between phenols and more dispersible polydopamine‐coated Fe3O4 in water, among which hydrophobic interaction dominates the magnetic solid‐phase extraction performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号