首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Herein we report a general strategy to synthesize highly uniform and monodisperse rare earth fluoride nanocrystals through a novel OA/ionic liquid two-phase system, while water-soluble hexagonal NaREF(4) nanocrystals are obtained by adding n-octanol.  相似文献   

2.
Highly crystalline, phase- and size-controlled CoO nanocrystals of hexagonal and cubic phases have been prepared by thermal decomposition of Co(acac)3 in oleylamine under an inert atmosphere. Kinetic and thermodynamic control for the precursor formation leads to two different seeds of hexagonal and cubic phases at higher temperatures. The crystal size of both CoO phases can be easily manipulated by changing the precursor concentration and reaction temperature.  相似文献   

3.
Hydrothermal synthesis of rare-earth fluoride nanocrystals   总被引:2,自引:0,他引:2  
Wang X  Zhuang J  Peng Q  Li Y 《Inorganic chemistry》2006,45(17):6661-6665
In this paper, a hydrothermal synthetic route has been developed to prepare a class of rare-earth fluoride nanocrystals, which have shown gradual changes in growth modes with decreasing ionic radii and may serve as a model system for studying the underlying principle in the controlled growth of rare-earth nanocrystals. Furthermore, we demonstrate the functionalization of these nanocrystals by means of doping, which have shown visible-to-the-naked-eye green up-conversion emissions and may find application in biological labeling fields.  相似文献   

4.
We report a general synthesis of high-quality cubic (alpha-phase) and hexagonal (beta-phase) NaREF4 (RE: Pr to Lu, Y) nanocrystals (nanopolyhedra, nanorods, nanoplates, and nanospheres) and NaYF(4):Yb,Er/Tm nanocrystals (nanopolyhedra and nanoplates) via the co-thermolysis of Na(CF3COO) and RE(CF3COO)3 in oleic acid/oleylamine/1-octadecene. By tuning the ratio of Na/RE, solvent composition, reaction temperature and time, we can manipulate phase, shape, and size of the nanocrystals. On the basis of its alpha --> beta phase transition behavior, along the rare-earth series, NaREF4 can be divided into three groups (I: Pr and Nd; II: Sm to Tb; III: Dy to Lu, Y). The whole controlled-synthesis mechanism can be explained from the point of view of free energy. Photoluminescent measurements indicate that the value of I610/I590 and the overall emission intensity of the NaEuF4 nanocrystals are highly correlative with the symmetries of the Eu3+ ions in both the lattice and the surface.  相似文献   

5.
Micelle-vesicle-micelle (MVM) transitions are observed in the aqueous-mixed ionic liquid (1-butyl-3-methylimidazolium octyl sulfate and 3-methyl-1-octylimidazolium chloride) system. The surface activity of mixed ILs, phase behavior, and solution structures in the system have been thoroughly characterized using conductometry, tensiometry, fluorimetry, dynamic light scattering (DLS), viscometry, turbidity, atomic force microscopy (AFM), transmission electron microscopy (TEM), and (1)H NMR techniques. Synergetic interactions between the two ILs in monolayers at the air/water interface and in micelles/vesicles have been determined using the regular solution approach, and the origins of spontaneous vesicle formation in this novel system are discussed. Using a photoreduction method, the formation of stable gold nanoparticles (GNPs) and microscale nanosheets of different shapes and sizes in the micellar and vesicle solutions has been reported. The studies show the potential of a mixed IL system in constructing stable micelles/supramolecular assemblies, such as bilayer vesicles, which are effective in the preparation of the desired nanomaterials.  相似文献   

6.
Response surface methodology (RSM) based on a five-level, three-variable central composite design (CCD) was employed for modeling and optimizing the conversion yield of the enzymatic acylation of hesperidin with decanoic acid using immobilized Candida antarctica lipase B (CALB) in a two-phase system containing [bmim]BF(4). The three variables studied (molar ratio of hesperidin to decanoic acid, [bmim]BF(4)/acetone ratio and lipase concentration) significantly affected the conversion yield of acylated hesperidin derivative. Verification experiments confirmed the validity of the predicted model. The lipase showed higher conversion degree in a two-phase system using [bmim]BF(4) and acetone compared to that in pure acetone. Under the optimal reaction conditions carried out in a single-step biocatalytic process when the water content was kept lower than 200 ppm, the maximum acylation yield was 53.6%.  相似文献   

7.
8.
酸性离子液体催化油酸酯化合成生物柴油   总被引:10,自引:0,他引:10  
酸性离子液体具有催化活性好、选择性高及易于回收等优点,是一种应用前景非常好的环境友好的酸性催化剂,在生物柴油合成反应中具有重大的理论意义和应用价值. 本文以油酸和甲醇为原料,探讨了7种不同酸性离子液体在生物柴油合成反应中的催化效应. 研究表明,离子液体酸性越强,催化酯化活性越高;引入磺酸基团可大大增强离子液体Brönsted酸性,使其在酯化反应中发挥溶剂/催化剂的双重作用,促进酯化反应向产物方向进行,达到高产率,因而1-丁基磺酸-3-甲基咪唑硫酸氢盐([BHSO3MIM]HSO4)催化效果最好. 此外,系统研究了[BHSO3MIM]HSO4催化油酸与甲醇酯化反应,并采用响应面法优化了反应条件. 结果发现,该反应的最适醇酸摩尔比、催化剂用量、反应温度及反应时间分别为4:1,10%(基于油酸的质量),130 ℃和4 h;在此条件下,生物柴油产率为97.7%. [BHSO3MIM]HSO4连续使用10批次后,仍能保持初始催化活性的95.6%,表现出极好的操作稳定性. 另外,利用该离子液体催化游离脂肪酸含量为72%的废油脂生产生物柴油,反应6 h可获得产率94.9%. 可见,[BHSO3MIM]HSO4在酯化生产生物柴油方面具有巨大的应用潜力.  相似文献   

9.
An ionic liquid/aqueous two-phase system based on the hydrophilic ionic liquid 1-butyl-3-methylimidazolium chloride (BmimCl) and K(2)HPO(4) has been employed for direct extraction of proteins from human body fluids for the first time. Proteins present at low levels were quantitatively extracted into the BmimCl-rich upper phase with a distribution ratio of about 10 between the upper and lower phase and an enrichment factor of 5. Addition of an appropriate amount of K(2)HPO(4) to the separated upper phase results in a further phase separation, giving rise to an improved enrichment factor of 20. FTIR and UV spectroscopy demonstrated that no chemical (bonding) interactions between the ionic liquid and the protein functional groups were identifiable, while no alterations of the natural properties of the proteins were observed. The partitioning of proteins in the two-phase system was assumed to have been facilitated by the electrostatic potential difference between the coexisting phases, as well as by salting out effects. The system could be applied successfully for the quantification of proteins in human urine after on-line phase separation in a flow system. The use of an ionic liquid, as a green solvent, offers clear advantages over traditional liquid-liquid extractions, in which the use of toxic organic solvents is unavoidable.  相似文献   

10.
Monodispersed Fe nanocrystals up to approximately 2 nm thick, approximately 50 nm wide and approximately 120 nm long have been electrodeposited from the ionic melt AlCl(3)-1-methyl-3-butylimidazolium chloride [AlCl3-[MBIm](+)Cl(-)] at room temperature on Au(111) and have been characterized in-situ by electrochemical scanning tunneling microscopy.  相似文献   

11.
The facile one-pot preparation of hydrophobic cellulose nanocrystals (CNCs) from wood pulpboard in an ionic liquid is reported in the present paper. This process employed a so-called amorphous cellulose solvent system capable of dissolving the majority of the amorphous regions in cellulose while maintaining the crystalline domains essentially intact, and consisting of tetrabutylammonium acetate with dimethylacetamide. These solvents were mixed at a mass ratio of 1:9 in conjunction with acetic anhydride to prepare CNCs via surface acetylation. The rod-like morphology and nanometer-scale dimensions of the resulting CNCs were ascertained by atomic force microscopy and transmission electron microscopy. Successful surface acetylation while maintaining an intact crystalline core was confirmed by Fourier transform infrared, 13C CP/MAS NMR and X-ray photoelectron spectroscopy in addition to X-ray diffraction. Finally, the thermal stability and hydrophobic behavior of the hydrophobic CNCs were characterized using thermal gravimetric analysis and water contact-angle measurements, respectively.  相似文献   

12.
13.
Due to favourable partition coefficients the highly enantioselective reduction of 2-octanone, catalysed by an alcohol dehydrogenase from Lactobacillus brevis, is faster in a biphasic system containing buffer and the ionic liquid [BMIM][(CF(3)SO(2))(2)N] compared to the reduction in a biphasic system containing buffer and methyl tert-butyl ether.  相似文献   

14.
郭荣  傅清红 《中国化学》2000,18(1):13-17
In the lamellar liquid crystallization (LLC) phase of NaOL/ OLA/H2O system, the small angle X-ray diffraction measurements show that the oleic acid is solubilized in the oil layer at first and then into the amphiphile layer. The octadiene added is also located partly in the oil layer and partly in the amphiphile layer in the LLC. With the addition of octadiene as cross-Unking agent, the LLC phase of NaOL/OIA/H2O system was polymerized under the initiation of AIBN with the protection of pure nitrogen at 60℃. Most of the double bond absorption of the monomers in IR spectra disappeared after polymerization. The polymerization takes place not only in the middle of the amphiphile layer between the double bonds of NaOL or OLA and those of octadiene, but also in the oil layer of LLC between the double bonds of OLA and those of octadiene. Interlayer spacing measurements on the copolymer proved d values decreased by about 1-2 nm compared with those of the corresponding system before the polymerization, indicati  相似文献   

15.
This paper presents a feasible and efficacious procedure to synthesize polystyrene/upconversion nanocrystals (PS/UCNCs) nanocomposite spheres with raspberry-like structure via an in situ dispersion polymerization technique. During this process, polyacrylic acid (PAA) as stabilizer plays the key role in adsorbing UCNCs, including NaYF(4):Yb(3+)-Er(3+), NaYF(4):Yb(3+)-Tm(3+) and NaYF(4):Yb(3+)-Ho(3+) onto the PS surfaces. TEM and SEM images confirmed the raspberry-like morphology of the obtained nanocomposite spheres. The effect of synthetic conditions, for instances, PAA amount, type and concentration of UCNCs on the structure and fluorescence of the PS/UCNCs nanocomposite spheres were studied in detail.  相似文献   

16.
In the past decade, ionic liquids have received great attention owing to their potential as green solvent alternatives to conventional organic solvents. In this work, hydrophobic achiral ionic liquids (1-butyl-3-methylimidazolium-hexafluorophosphate([bmim][PF6]), 1-octyl-3-methylimidazolium tetrafluoroborate([omim][BF4])) were used as solvents in chiral liquid-liquid extraction separation of mandelic acid (MA) enantiomers with β-cyclodextrin (β-CD) derivatives as hydrophilic chiral selectors preferentially forming complexes with (R)-enantiomers. Factors affecting the separation efficiency were optimised, namely the type of the extraction solvents and β-CD derivatives, concentrations of the β-CD derivatives and MA enantiomers, pH, and temperature. Excellent enantioseparation of MA enantiomers was achieved in the ionic liquid aqueous two-phase extraction systems under the optimal conditions of pH 2.5 and temperature of 5°C with the maximum enantioselectivity (α) of 1.74. The experimental results demonstrated that the ionic liquid aqueous two-phase extraction systems with a β-CD derivative as the chiral selector have a strong chiral recognition ability, which might extend the application of ionic liquids in chiral separation.  相似文献   

17.
Water soluble CdTe nanocrystals covered with cationic thiol derivatives are efficiently transferred into a hydrophobic ionic liquid, in which they show enhanced photoluminescence.  相似文献   

18.
Zinc hydroxide fluoride (Zn(OH)F) with multiform morphologies such as flower-like particles, pumpkin-like aggregates, and hollow orange-like aggregates are prepared by a microwave-assisted ionic liquid method. During synthesis, microwave irradiation accelerates the reaction rate and shortens the reaction time. 1-Butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF4]) or 1-2-hydroxylethyl-3-methylimidazolium tetrafluoroborate ([C2OHmim][BF4]) is used as both reactant and template. Experimental results indicate that the morphology evolution of Zn(OH)F is mainly controlled by the concentration of zinc acetate solution. A possible mechanism underlying the formation of nanostructured Zn(OH)F with diverse morphologies is proposed. Furthermore, nanoporous ZnO is obtained by the thermal decomposition of as-prepared Zn(OH)F in air, and the morphology is well retained.  相似文献   

19.
Han J  Wang Y  Yu C  Li C  Yan Y  Liu Y  Wang L 《Analytica chimica acta》2011,(2):138-145
Ionic liquid–salt aqueous two-phase flotation (ILATPF) is a novel, green, non-toxic and sensitive samples pretreatment technique. ILATPF coupled with high-performance liquid chromatography (HPLC) was developed for the analysis of chloramphenicol, which combines ionic liquid aqueous two-phase system (ILATPS) based on imidazolium ionic liquid (1-butyl-3-methylimidazolium chloride, [C4mim]Cl) and inorganic salt (K2HPO4) with solvent sublation. In ILATPF systems, phase behaviors of the ILATPF were studied for different types of ionic liquids and salts. The sublation efficiency of chloramphenicol in [C4mim]Cl–K2HPO4 ILATPF was influenced by the types of salts, concentration of K2HPO4 in aqueous solution, solution pH, nitrogen flow rate, sublation time and the amount of [C4mim]Cl. Under the optimum conditions, the average sublation efficiency is up to 98.5%. The mechanism of ILATPF contains two principal processes. One is the mechanism of IL–salt ILATPS formation, the other is solvent sublation. This method was practical when applied to the analysis of chloramphenicol in lake water, feed water, milk, and honey samples with the linear range of 0.5–500 ng mL−1. The method yielded limit of detection (LOD) of 0.1 ng mL−1 and limit of quantification (LOQ) of 0.3 ng mL−1. The recovery of CAP was 97.1–101.9% from aqueous samples of environmental and food samples by the proposed method. Compared with liquid–liquid extraction, solvent sublation and ionic liquid aqueous two-phase extraction, ILATPF can not only separate and concentrate chloramphenicol with high sublation efficiency, but also efficiently reduce the wastage of IL. This novel technique is much simpler and more environmentally friendly and is suggested to have important applications for the concentration and separation of other small biomolecules.  相似文献   

20.
We report the first systematic synthesis of monodisperse rare-earth (RE=La to Lu, Y) fluoride and oxyfluoride nanocrystals with diverse shapes (trigonal REF3 triangular, truncated-triangular, hexagonal, and polygonal nanoplates; orthorhombic REF3 quadrilateral and zigzag-shaped nanoplates; cubic REOF nanopolyhedra and nanorods) from single-source precursors (SSP) of [RE(CF(3)COO)(3)] through controlled fluorination in oleic acid (OA)/oleylamine (OM)/1-octadecene (ODE). To selectively obtain REF3 or REOF nanocrystals, the fluorination of the RE-O bond to the RE-F bond at the nucleation stage was controlled by finely tuning the ratio of OA/ODE or OA/OM, and the reaction temperature. For phase-pure REF3 or REOF naocrystals, their shape-selective syntheses could be realized by further modifying the reaction conditions. The two-dimensional growth of the REF3 nanoplates and the one-dimensional growth of the REOF nanorods were likely due to the selective adsorption of the capping ligands on specific crystal planes of the nanocrystals. Those well-shaped nanocrystals with diverse geometric symmetries (such as D(3h), D(6h), C(2h), O(h), and D(nh)) displayed a remarkable capability to form self-assembled superlattices. By manipulating the solvent-substrate combination, the plate-shaped REF3 nanocrystals could form highly ordered nanoarrays by means of either the face-to-face formation or the edge-to-edge formation. By using this SSP strategy, we also obtained high-quality LaF3:Eu and LaF3:Eu/LaF3 triangular nanoplates that showed photoluminescent red emissions of Eu3+ ions sensitive to the surface effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号