首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
A two boundary quantum mechanics without time ordered causal structure is advocated as consistent theory. The apparent causal structure of usual “near future” macroscopic phenomena is attributed to a cosmological asymmetry and to rules governing the transition between microscopic to macroscopic observations. Our interest is a heuristic understanding of the resulting macroscopic physics.  相似文献   

4.
The application of the conceptual analysis (CA) method outlined in Part I is illustrated on the example of quantum mechanics. In Part II, we deduce the complete-lattice structure in quantum mechanics from postulates specifying the idealizations that are accepted in the theory. The idealized abstract concepts are introduced by means of a topological extension of the basic structure (obtained in Part I) in accord with the “approximation principle”; the relevant topologies are not arbitrarily chosen; they are fixed by the choice of the idealizations. There is a typical topological asymmetry in the mathematical scheme. Convexity or linear structures do not play any role in the mathematical methods of this approach. The essential concept in Part II is the idealization of “perfect measurement” suggested by our conceptual analysis in Part I. The Hilbert-space representation will be deduced in Part III. In our papers, we keep to the tenet: The mathematical scheme of a physical theory must be rigorously formulated. However, for physics, mathematics is only a nice and useful tool; it is not purpose.  相似文献   

5.
6.
7.
F. Jenč 《Foundations of Physics》1979,9(11-12):897-928
We illustrate the application of the conceptual analysis (CA) method outlined in Part I by the example of quantum mechanics. In the present part the Hilbert space structure of conventional quantum mechanics is deduced as a consequence of postulates specifying further idealized concepts. A critical discussion of the idealizations of quantum mechanics is proposed. Quantum mechanics is characterized as a “statistically complete” theory and a simple and elegant formal recipe for the construction of the fundamental mathematical apparatus of quantum mechanics is formulated. Our analysis may also lead to a criticism of quantum mechanics as a “strongly idealized” theory. A critical analysis of the fundamental structure of quantum mechanics seems an indispensable and natural starting point for the construction of new theories. A major technical problem in a more general application of the CA method is the lack of mathematical representation theorems for more general algebraic structures.  相似文献   

8.
We consider the following statistical problem: suppose we have a light beam and a collection of semi-transparent windows which can be placed in the way of the beam. Assume that we are colour blind and we do not possess any colour sensitive detector. The question is, whether by only measurements of the decrease in the beam intensity in various sequences of windows we can recognize which among our windows are light beam filters absorbing photons according to certain definite rules? To answer this question a definition of physical systems is formulated independent of “quantum logic” and lattice theory, and a new idea of quantization is proposed. An operational definition of filters is given: in the framework of this definition certain nonorthodox classes of filters are admissible with a geometry incompatible to that assumed in orthodox quantum mechanics. This leads to an extension of the existing quantum mechanical structure generalizing the schemes proposed by Ludwig [10] and the present author [13]. In the resulting theory, the quantum world of orthodox quantum mechanics is not the only possible but is a special member of a vast family of “quantum worlds” mathematically admissible. An approximate classification of these worlds is given, and their possible relation to the quantization of non-linear fields is discussed. It turns out to be obvious that the convex set theory has a similar significance for quantum physics as the Riemannian geometry for space-time physics.  相似文献   

9.
Underlying any physical theory is a layer of conceptual frames. They connect the mathematical structures used in theoretical models with the phenomena, but they also constitute our fundamental assumptions about reality. Many of the discrepancies between quantum physics and classical physics (including Maxwell's electrodynamics and relativity) can be traced back to these categorical foundations. We argue that classical physics corresponds to the factual aspects of reality and requires a categorical framework which consists of four interdependent components: boolean logic, the linear‐sequential notion of time, the principle of sufficient reason, and the dichotomy between observer and observed. None of these can be dropped without affecting the others. However, quantum theory also addresses the “status nascendi” of facts, i.e., their coming into being. Therefore, quantum physics requires a different conceptual framework which will be elaborated in this article. It is shown that many of its components are already present in the standard formalisms of quantum physics, but in most cases they are highlighted not so much from a conceptual perspective but more from their mathematical structures. The categorical frame underlying quantum physics includes a profoundly different notion of time which encompasses a crucial role for the present. The article introduces the concept of a categorical apparatus (a framework of interdependent categories), explores the appropriate apparatus for classical and quantum theory, and elaborates in particular on the category of non‐sequential time and an extended present which seems to be relevant for a quantum theory of (space)‐time.  相似文献   

10.
A procedure is given for the transformation of quantum mechanical operator equations into stochastic equations. The stochastic equations reveal a simple correlation between quantum mechanics and classical mechanics: Quantum mechanics operates with “optimal estimations,” classical mechanics is the limit of “complete information.” In this connection, Schrödinger's substitution relationsp x → -i? ?/?x, etc, reveal themselves as exact mathematical transformation formulas. The stochastic version of quantum mechanical equations provides an explanation for the difficulties in correlating quantum mechanics and the theory of relativity: In physics “time” is always thought of as a numerical parameter; but in the present formalism of physics “time” is described by two formally totally different quantities. One of these two “times” is a numerical parameter and the other a random variable. This last concept of time shows all the properties required by the theory of relativity and is therefore to be considered as the relativistic time.  相似文献   

11.
梁方豪 《物理学报》2001,50(3):572-576
对于具有连续能谱的单粒子量子体系,“包含在连续谱量子体系中的决定论性”一文用所谓“双波函数”来描述处于能量本征态的粒子系综中各粒子的量子行为,并且在所谓的“等价定理”中称:双波函数描述在经典极限下将化为经典力学描述.然而,此描述所给出的系综力学量观测值统计分布的预言与通常量子力学不相容;并且,该文对其“等价定理”的证明是不正确的,这个“定理”实际上不成立 关键词: 连续能谱量子体系 双波函数 经典极限  相似文献   

12.
Quantum particles and classical particles are described in a common setting of classical statistical physics. The property of a particle being “classical” or “quantum” ceases to be a basic conceptual difference. The dynamics differs, however, between quantum and classical particles. We describe position, motion and correlations of a quantum particle in terms of observables in a classical statistical ensemble. On the other side, we also construct explicitly the quantum formalism with wave function and Hamiltonian for classical particles. For a suitable time evolution of the classical probabilities and a suitable choice of observables all features of a quantum particle in a potential can be derived from classical statistics, including interference and tunneling. Besides conceptual advances, the treatment of classical and quantum particles in a common formalism could lead to interesting cross‐fertilization between classical statistics and quantum physics.  相似文献   

13.
Physical superpositions exist both in classical and in quantum physics. However, what is exactly meant by ‘superposition’ in each case is extremely different. In this paper we discuss some of the multiple interpretations which exist in the literature regarding superpositions in quantum mechanics. We argue that all these interpretations have something in common: they all attempt to avoid ‘contradiction’. We argue in this paper, in favor of the importance of developing a new interpretation of superpositions which takes into account contradiction, as a key element of the formal structure of the theory, “right from the start”. In order to show the feasibility of our interpretational project we present an outline of a paraconsistent approach to quantum superpositions which attempts to account for the contradictory properties present in general within quantum superpositions. This approach must not be understood as a closed formal and conceptual scheme but rather as a first step towards a different type of understanding regarding quantum superpositions.  相似文献   

14.
15.
16.
17.
In recent discussions two different views concerning the rôle of processes of observation and measurement in quantum mechanics have been put forward. One of these (Ludwig) assumes the theory of measurement to be connected with macrophysics, and macrophysics to stand still outside the frame of pure quantum mechanics. Other considerations too supporting the idea that quantum mechanics is not yet the last step in necessary generalisations of classical physics the author reports shortly about his endeavour to recognise mathematical possibilities for further generalisations, starting especially fromNeumann-Birkhoff's “quantum logic”.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号