首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inam R  Somer G 《Talanta》1998,46(6):1347-1355
The polarographic reduction of lead in the presence of selenite gives rise to an additional peak corresponding to the reduction of lead (Pb) on adsorbed selenium (Se) on mercury at −0.33 V. The selenium and lead content can be determined using this peak by the addition of a known amount of one of these ions first and then the second ion. The linear domain range of lead is 5.0×10−7–2.0×10−5 M and for selenium 5.0×10−7–1.0×10−5 M. Using this method 4.90×10−7 M Se(IV) and 1.47×10−6 M Pb(II) in a synthetic sample could be determined with a relative error of +2.0% and 1.8%, respectively (n=4). A recovery test after acid digestion for a synthetic sample was 97% for selenium and 96.5% for lead. The method was applied to 1 ml of digested blood, and 328±23 μg l−1 Se(IV) and 850±62 μg l−1 Pb(II) could be determined with a 90% (n=5) confidence interval.  相似文献   

2.
Hassan SS  Ali MM  Attawiya AM 《Talanta》2001,54(6):1153-1161
Two novel uranyl PVC matrix membrane sensors responsive to uranyl ion are described. The first sensor incorporates tris(2-ethylhexyl)phosphate (TEHP) as both electroactive material and plasticizer and sodium tetraphenylborate (NaTPB) as an ion discriminator. The sensor displays a rapid and linear response for UO22+ ions over the concentration range 1×10−1–2×10−5 mol l−1 UO22+ with a cationic slope of 25.0±0.2 mV decade−1. The working pH range is 2.8–3.6 and the life span is 4 weeks. The second sensor contains O-(1,2-dihydro-2-oxo-1-pyridyl)-N,N,N′,N′-bis(tetra-methylene)uronium hexafluorophosphate (TPTU) as a sensing material, sodium tetraphenylborate as an ion discriminator and dioctyl phenylphosphonate (DOPP) as a plasticizer. Linear and stable response for 1×10−1–5×10−5 mol l−1 UO22+ with near-Nernstian slope of 27.5±0.2 mV decade−1 are obtained. The working pH range is 2.5–3.5 and the life span of the sensor is 6 weeks. Interference from many inorganic cations is negligible for both sensors. However, interference caused by some ions (e.g. Th4+, Cu2+, Fe3+) is eliminated by a prior ion exchange or solvent extraction step. Direct potentiometric determination of as little as 5 μg ml−1 uranium in aqueous solutions shows an average recovery of 97.2±1.3%. Application for the determination of uranium at levels of 0.01–1 wt.% in naturally occurring and certified ores gives results with good correlation with data obtained by X-ray fluorescence.  相似文献   

3.
Trace amounts of nickel(II) can function as a trigger (=reaction initiator) in an autocatalytic reaction with the sodium sulfite/hydrogen peroxide system. Based on this finding, sub-μg L−1 levels of nickel(II) were determined by a time measurement using the autocatalytic reaction. The detection range using the above method was 10−9–10−5 M, the detection limit (3σ) was 8.1 × 10−10 M (0.047 μg L−1), and the relative standard deviation was 2.66% at nickel(II) concentration of 10−7 M (n = 7). This method was applied to length detection-flow injection analysis. The detection range for the flow injection analysis was 2 × 10−9–2 × 10−3 M. The detection limit (3σ) was 1.4 × 10−9 M (0.082 μg L−1), and the relative standard deviation was 1.86 at initial nickel(II) concentration of 10−6 M (n = 7).  相似文献   

4.
UV spectra and kinetics for the reactions of alkyl and alkylperoxy radicals from methyl tert-butyl ether (MTBE) were studied in 1 atm of SF6 by the pulse radiolysis-UV absorption technique. UV spectra for the radical mixtures were quantified from 215 to 340 nm. At 240 nm. σR = (2.6 ± 0.4) × 10−18 cm2 molecule−1 and σRO2 = (4.1 ± 0.6) × 10−18 cm2 molecule−1 (base e). The rate constant for the self-reaction of the alkyl radicals is (2.5 ± 1.1) × 10−11 cm3 molecule−1 s−1. The rate constants for reaction of the alkyl radicals with molecular oxygen and the alkylperoxy radicals with NO and NO2 are (9.1 ± 1.5) × 10−13, (4.3 ± 1.6) × 10−12 and (1.2 ± 0.3) × 10−11 cm3 molecule−1 s−1, respectively. The rate constants given above refer to reaction at the tert-butyl side of the molecule.  相似文献   

5.
Ohura H  Imato T  Yamasaki S 《Talanta》1999,49(5):1383-1015
A rapid potentiometric flow injection technique for the simultaneous determination of oxychlorine species such as ClO3–ClO2 and ClO3–HClO has been developed, using both a redox electrode detector and a Fe(III)–Fe(II) potential buffer solution containing chloride. The analytical method is based on the detection of a large transient potential change of the redox electrode due to chlorine generated via the reaction of the oxychlorine species with chloride in the potential buffer solution. The sensitivities to HClO and ClO2 obtained by the transient potential change were enhanced 700–800-fold over that using an equilibrium potential. The detection limit of the present method for HClO and ClO2 is as low as 5×10−8 M with use of a 5×10−4 M Fe(III)–1×10−3 M Fe(II) buffer containing 0.3 M KCl and 0.5 M H2SO4. On the other hand, sensitivity to ClO3 was low when a potential buffer solution containing 0.5 M H2SO4 was used, but could be increased largely by increasing the acidity of the potential buffer. The detection limit for ClO3 was 2×10−6 M with the use of a 5×10−4 M Fe(III)–1×10−3 M Fe(II) buffer containing 0.3 M KCl and 9 M H2SO4. By utilizing the difference in reactivity of oxychlorine species with chloride in the potential buffer, a simultaneous determination method for a mixed solution of ClO3–ClO2 or ClO3–HClO was designed to detect, in a timely manner, a transient potential change with the use of two streams of potential buffers which contain different concentrations of sulfuric acid. Analytical concentration ranges of oxychlorine species were 2×10−5–2×10−4 M for ClO3, and 1×10−6–1×10−5 M for HClO and ClO2. The reproducibility of the present method was in the range 1.5–2.3%. The reaction mechanism for the transient potential change used in the present method is also discussed, based on the results of batchwise experiments. The simultaneous determination method was applied to the determination of oxychlorine species in a tap water sample, and was found to provide an analytical result for HClO, which was in good agreement with that obtained by the o-tolidine method and to provide a good recovery for ClO3 added to the sample.  相似文献   

6.
Li Liu  Jun-feng Song  Peng-fei Yu  Bin Cui 《Talanta》2007,71(5):1842-1848
A novel voltammetric method for the determination of β-d-glucose (GO) is proposed based on the reduction of Cu(II) ion in Cu(II)(NH3)42+–GO complex at lanthanum(III) hydroxide nanowires (LNWs) modified carbon paste electrode (LNWs/CPE). In 0.1 mol L−1 NH3·H2O–NH4Cl (pH 9.8) buffer containing 5.0 × 10−5 mol L−1 Cu(II) ion, the sensitive reduction peak of Cu(II)(NH3)42+–GO complex was observed at −0.17 V (versus, SCE), which was mainly ascribed to both the increase of efficient electrode surface and the selective coordination of La(III) in LNW to GO. The increment of peak current obtained by deducting the reduction peak current of the Cu(II) ion from that of the Cu(II)(NH3)42+–GO complex was rectilinear with GO concentration in the range of 8.0 × 10−7 to 2.0 × 10−5 mol L−1, with a detection limit of 3.5 × 10−7 mol L−1. A 500-fold of sucrose and amylam, 100-fold of ascorbic acid, 120-fold of uric acid as well as gluconic acid did not interfere with 1.0 × 10−5 mol L−1 GO determination.  相似文献   

7.
Cha KW  Park KW 《Talanta》1998,46(6):1567-1571
The spectrofluorimetric determination of Fe3+ using salicylic acid as an emission reagent has been investigated by measuring the decrease of fluorescence intensity of salicylic acid due to the complexation of Fe3+–salicylic acid. An emission peak of salicylic acid, which is decreased linearly by addition of Fe3+, occurs at 409 nm in aqueous solution with excitation at 299 nm. The determination of the ferric ion is in the range 1×10−6–10×10−6 M Fe3+ (0.0558–0.558 μg/ml) and the detection limit is 5×10−8 M. The quenching effect of Fe3+ on the fluorescence intensity of salicylic acid may be considered on the basis of complexation between salicylic acid and Fe3+. The effects of foreign ions were investigated.  相似文献   

8.
The cross section for the quenching of NH(c 1Π, ν = 0) by HN3 was measured by using a pulsed laser technique. A single rotational level of NH(c 1Π, ν = 0) was formed by exciting NH(a 1Δ, ν = 0) with a frequency doubled dye laser. NH(a1Δ) was produced by photolyzing HN3 with a XeCl excimer laser. The time profiles of the NH(c-a) fluorescence were measured at various pressures of HN3. Experiments were performed both in the presence and in the absence of He buffer gas. In the absence of He, the NH radicals were found to be translationally hot; the average velocity was 3800±600 m s−1. The quenching cross sections for the translationally hot and thermalized NH(c) radicals by HN3 were determined to be (28±5) × 10−16 and (85±3) × 10−16 cm2, respectively. No rotational level dependence could be observed in the quenching of the hot NH(c) radicals.  相似文献   

9.
van Staden JF  Stefan RI 《Talanta》1999,49(5):1472-1022
An on-line automated system for the simultaneous flow injection determination of calcium and fluoride in natural and borehole water with conventional calcium-selective and fluoride-selective membrane electrodes as sensors in series is described. Samples (30 μl) are injected into a TISAB II (pH=5.50) carrier solution as an ionic strength adjustment buffer. The sample-buffer zone formed is first channeled to a fluoride-selective membrane electrode and then via the calcium-selective membrane electrode to the reference electrodes. The system is suitable for the simultaneous on-site monitoring of calcium (linear range 10−5–10−2 mol l−1 detection limit 1.94×10−6 mol l−1 recovery 99.22%, RSD<0.5%) and fluoride (linear range 10−5–10−2 mol l−1 detection limit 4.83×10−6 mol l−1 recovery 98.63%, RSD=0.3%) at a sampling rate of 60 samples h−1.  相似文献   

10.
Rate constants for the reactions of OH with CH3CN, CH3CH2CN and CH2=CH-CN have been measured to be 5.86 × 10−13 exp(−1500 ± 250 cal mole−1/RT), 2.69 × 10−13 exp(−1590 ± 350 cal mole−1/RT and 4.04 × 10−12 cm3 molecule−1 s−1, respectively in the temperature range 298–424 K. These results are discussed in terms of the atmospheric lifetimes of nitrfles.  相似文献   

11.
Formation constants for recrystallized thymol blue were determined in water, using the SQUAD and SUPERQUAD programs. The best model correlating spectrophotometric, potentiometric and conductimetric data was fitted with the dissociation of HL=L2−+H+−log K=8.918±0.070 and H3L2=2L2−+3H+−log K=29.806±0.133 with the SUPERQUAD program at variable low ionic strength (1.5×10−4–3.0×10−4 M); and HL=L2−+H+−log K=8.9±0.000, H3L2 =2L2−+3H+−log K=30.730±0.032, H4L2=2L2−+4H+−log K=32.106±0.033 with SQUAD at 1.1 M ionic strength.  相似文献   

12.
The second-order rate constants of gas-phase Lu(2D3/2) with O2, N2O and CO2 from 348 to 573 K are reported. In all cases, the reactions are relatively fast with small barriers. The disappearance rates are independent of total pressure indicating bimolecular abstraction processes. The bimolecular rate constants (in molecule−1 cm3 s−1) are described in Arrhenius form by k(O2)=(2.3±0.4)×10−10exp(−3.1±0.7 kJmol−1/RT), k(N2O)=(2.2±0.4)×10−10exp(−7.1±0.8 kJmol−1/RT), k(CO2)=(2.0±0.6)×10−10exp(−7.6±1.3 kJmol−1/RT), where the uncertainties are ±2σ.  相似文献   

13.
Wang Q  Li N 《Talanta》2001,55(6):243-1225
The thiolactic acid (TLA) self-assembled monolayer modified gold electrode (TLA/Au) is demonstrated to catalyze the electrochemical response of norepinephrine (NE) by cyclic voltammetry. A pair of well-defined redox waves were obtained and the calculated standard rate constant (ks) is 5.11×10−3 cm s−1 at the self-assembled electrode. The electrode reaction is a pseudo-reversible process. The peak current and the concentration of NE are a linear relationship in the range of 4.0×10−5–2.0×10−3 mol l−1. The detection limit is 2.0×10−6 mol l−1. By ac impedance spectroscopy the apparent electron transfer rate constant (kapp) of Fe(CN)3−/Fe(CN)4− at the TLA/Au electrode was obtained as 2.5×10−5 cm s−1.  相似文献   

14.
The anodization of mercury microelectrodes was investigated in synthetic samples containing several strong and weak electrolytes at different concentrations. In particular, the effects on mercury anodization due to the presence of NaOH, HClO4, NaCl, NaI, NaF, Na2SO4, NaHCO3, Na2CO3, tartaric and citric acids, were studied in solutions containing either each species or mixtures of them, and without addition of supporting electrolyte. Some of the electrode processes studied led to linear calibration plots e.g. 1 × 10−5 − 1 × 10−4M Cl, 1 × 10−6 − 1 × 10−5M I, 5 × 10−4 − 3 × 10−3M SO42−, 5 × 10−4 − 2 × 10−2M HCO3, with typical correlation coefficients of 0.998–0.999. The anodization of mercury microelectrodes was also investigated directly in wine, rain, tap and mineral water, without pretreatment and without addition of supporting electrolyte. In the real samples only the ions Cl and HCO3 could be quantified, and the values found were in agreement, within 3–5%, with the reference values obtained by using Italian standard methods for food.  相似文献   

15.
The reaction: F + HCl→ HF (v 3) + Cl (1), has been initiated by photolysing F2 using the fourth-harmonic output at 266 nm from a repetitively pulsed Nd: YAG laser By analysing the time-dependence of the HF(3,0) vibrational chemiluminescence, rate constants have been determined at (296 ± 5) K for reaction (1), k1 = (7.0 ± 0.5) × 10−12 cm3 molecule−1 s−1, and for the relaxation of HF(v = 3) by HCl, CO2, N2O, CO, N2 and O2: kHCl = (1.18 ±0.14) × 10−11 kCO2 = (1.04 ± 0. 13) × 10−12, kN2O = (1.41 ± 0.13) × 10−11 kCO = (2.9 ± 0.3) × (10−12, kN2 = (7.1 ± 0.6) × 10−14 and kO2 = (1.9 ± 0.6) × 10−14 cm3molecule−1s−1.  相似文献   

16.
Mealor D  Townshend A 《Talanta》1968,15(12):1477-1480
Methods are described for the determination of cyanide (10−8–10−5M and sulphide (10−7–10−5 M) based on the de-inhibitory effect of these ions on invertase inhibited by mercury(II) or by silver. Iodine (0.1–3 μg) may be determined by its inhibition of invertase.  相似文献   

17.
The collisional quenching of electronically excited germanium atoms, Ge[4p2(1S0)], 2.029 eV above the 4p2(3P0) ground state, has been investigated by time-resolved atomic resonance absorption spectroscopy in the ultraviolet at λ = 274.04 nm [4d(1P10) ← 4p2(1S0)]. In contrast to previous investigations using the ‘single-shot mode’ at high energy, Ge(1S0) has been generated by the repetitive pulsed irradiation of Ge(CH3)4 in the presence of excess helium gas and added gases in a slow flow system, kinetically equivalent to a static system. This technique was originally developed for the study of Ge[4p2(1D2)] which had eluded direct quantitative kinetic study until recently. Absolute second-order rate constants obtained using signal averaging techniques from data capture of total digitised atomic decay profiles are reported for the removal of Ge(1S0) with the following gases (kR in cm3 molecule−1 s−1, 300 K): Xe, 7.1 ± 0.4 × 10−13; N2, 4.7 ± 0.6 × 10−12; O2, 3.6 ± 0.9 × 10−11; NO, 1.5 ± 0.3 × 10−11; CO, 3.4 ± 0.5 × 10−12; N2O, 4.5 ± 0.5 × 10−12; CO2, 1.1 ± 0.3 × 10−11; CH4, 1.7 ± 0.2 × 10−11; CF4, 4.8 ± 0.3 × 10−12; SF6, 9.5 ± 1.0 × 10−13; C2H4, 3.3 ± 0.1 × 10−10; C2H2, 2.9 ± 0.2 × 10−10; Ge(CH3)4, 5.4 ± 0.2 × 10−11. The results are compared with previous data for Ge(1S0) derived in the single-shot mode where there is general agreement though with some exceptions which are discussed. The present data are also compared with analogous quenching rate data for the collisional removal of the lower lying Ge[4p2(1D2)] state (0.883 eV), also characterized by signal averaging methods similar to that described here.  相似文献   

18.
A novel copper(II) thiocyanate complex [Cu(im)2(NCS)2] 1 (im=imidazole) has been prepared and characterized by spectroscopic analysis and crystallographic method. This supramolecular compound exhibits a three-dimensional solid state structure constituted by N–HS hydrogen bonds and π–π stacking interactions. The compound in DMF solutions has a very strong third-order non-linear optical (NLO) behavior with absorption coefficient and refractive index 2=1.18×10−11 mw−1, n2=−9.00×10−16 m2w−1, respectively, and third-order NLO susceptibility χ(3) of 7.00×10−10 esu.  相似文献   

19.
Pei J  Li XY 《Talanta》2000,51(6):2379-1115
A thin film of mixed-valent CuPtCl6 is deposited on a glassy carbon electrode by continuous cyclic scanning in a solution containing 3×10−3 M CuCl2+3×10−3 M K2PtCl6+1 M KCl in the potential range from 700 to −800 mV. The cyclic voltammetry is used to study the electrochemical behaviors of nitrite on CuPtCl6/GC modified electrode and the electrode displays a good catalytic activity toward the oxidation of nitrite. The effects of the film thickness, pH, the electrode stability and precision have been evaluated. Experiments in flow-injection analysis are performed to characterize the electrode as an amperometric sensor for the detection of nitrite. The modified electrode shows a wide dynamic range, quite a low detection limit and short response time. The linear relationship between the flow-injection peak currents and the concentrations of nitrite is at a range of 1×10−7–2×10−3 M with a detection limit of 5×10−8 M.  相似文献   

20.
This survey begins with the photochemistry at 254 nm and 298 K in the system H2O2COO2RH, the primary objective of which is to determine the rate constants for the reaction OH + RH → H2O + R relative to the well-known rate constant for the reaction OH + CO → CO2 + H. Inherent in the scheme is that the reaction HO2+CO→OH+CO2 is negligible compared with the OH reaction, and a literature consensus gives kHO2 < 10−19 cm3 molecule−1 s−1, or some 106 less than kOH at 298 K. Theoretical calculations establish that the first stage in the HO2 reaction is the formation of a free radical intermediate HO2 + CO → HOOCO (perhydroxooxomethyl) which decomposes to yield the products, and that the rate of formation of the intermediate is equal to the rate of formation of the products. The structure of the intermediate and a reaction profile are shown.

High temperature rate data reported subsequent to the data in the consensus and theoretical calculations lead here to a recommendation that, in the range 250–800 K, kHO2 = 3.45 × 10−12T1/2 exp(1.15 × 104/T) cm3 molecule−1 s−1, the hard-sphere-collision Arrhenius modification. This yields kHO2(298) = 1.0 × 10−27 cm3 molecule−1 s−1 or some 1014 slower than kOH(298).  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号