首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
A simple technique is presented to generate temporally flat-top shaped laser pulses using electro-optic modulator (Pockels cell). It involves splitting of input laser pulse into two halves of equal intensity and then stacking together with appropriate optical delay to get a temporally flat-top laser pulse. It also allows generation of other pulse shapes by varying the relative intensity, delay, and phase between two halves of the input laser pulse. Temporally flat-top laser pulses of duration ~ 9 ns have been generated using ~ 7 ns duration incident laser pulses from a flash lamp pumped Q-switched Nd:glass laser oscillator. The rise and fall-time of the shaped pulse is limited by speed of electro-optic switch (Pockels cell), which is ~ 2 ns in the present case.  相似文献   

2.
A Tm:YLF laser pumped by a Raman shifted Er-fiber laser at 1.678 μm was studied at two Tm3+ ion concentrations equal to 1.5% and 5%. At output powers up to 460 mW the measured lasing efficiency at a wavelength of ~ 1.93 μm was as high as ~ 50%. The lasing performance was compared with that obtained under pumping by a 792-nm laser diode. The temporal structure of the laser pulse was recorded and the beam propagation factor M2 was measured for all pumping conditions.  相似文献   

3.
A high power diode-end-pumped passively Q-switched and mode-locking (QML) Nd:GdVO4 laser at 912 nm was demonstrated for the first time, to the best of our knowledge. A Z-type laser cavity with Cr4+:YAG crystals as the intracavity saturable absorber were employed in the experiments. Influence of the initial transmission (TU) of the saturable absorber on the QML laser performance was investigated. Using the TU = 95% Cr4+:YAG, as much as an average output power of 2.0 W pulsed 912 nm laser was produced at an absorbed pump power of 25.0 W, then the repetition rates of the Q-switched envelope and the mode-locking pulse were ~ 224 kHz and ~ 160 MHz, respectively. Whereas the maximum output power was reduced to 1.3 W using the TU = 90% Cr4+:YAG, we obtained a 100% modulation depth for the mode-locking pulses inside the Q-switched envelope.  相似文献   

4.
This paper describes a piezoelectric deformable mirror (DM) for adaptive optics (AO) applications, with a 100 μm thick silicon mirror driven by 61 unimorph microactuators. Measurement results show that the stroke of the DM is ~ 7.4 μm at 100 V, and the resonance frequency is at 18 kHz. To demonstrate the correction capability of the DM, low-order Zernike modes up to 14th term were reproduced. Furthermore, a close-loop correction of laser beam in a 633 nm helium-neon laser system was performed. After system aberrations being compensated, a focal spot approximate to Airy disk was achieved.  相似文献   

5.
We demonstrate broadband tuning visible light generation based on a multi-channel quasi-periodically poled LiTaO3 crystal, in which a quasi-phase matched optical parametric generation process and a quasi-phase matched sum-frequency mixing process were achieved simultaneously. The conversion characters on spectrum and energy were studied by using a nanosecond pulse laser at 1.064 μm as pump light. We could tune the visible light over ~ 26 nm by means of changing the crystal's channel and temperature. The ratio of the output wavelength variation to that of temperature was ~ 0.07 nm/°C. The single-pass slope efficiency was 6.3% with the maximum output energy of 25 μJ.  相似文献   

6.
Here we provide a full report on the construction, components, and capabilities of our consortium’s “open-source” large-scale (~ 1 L/h) 129Xe hyperpolarizer for clinical, pre-clinical, and materials NMR/MRI (Nikolaou et al., Proc. Natl. Acad. Sci. USA, 110, 14150 (2013)). The ‘hyperpolarizer’ is automated and built mostly of off-the-shelf components; moreover, it is designed to be cost-effective and installed in both research laboratories and clinical settings with materials costing less than $125,000. The device runs in the xenon-rich regime (up to 1800 Torr Xe in 0.5 L) in either stopped-flow or single-batch mode—making cryo-collection of the hyperpolarized gas unnecessary for many applications. In-cell 129Xe nuclear spin polarization values of ~ 30%–90% have been measured for Xe loadings of ~ 300–1600 Torr. Typical 129Xe polarization build-up and T1 relaxation time constants were ~ 8.5 min and ~ 1.9 h respectively under our spin-exchange optical pumping conditions; such ratios, combined with near-unity Rb electron spin polarizations enabled by the high resonant laser power (up to ~ 200 W), permit such high PXe values to be achieved despite the high in-cell Xe densities. Importantly, most of the polarization is maintained during efficient HP gas transfer to other containers, and ultra-long 129Xe relaxation times (up to nearly 6 h) were observed in Tedlar bags following transport to a clinical 3 T scanner for MR spectroscopy and imaging as a prelude to in vivo experiments. The device has received FDA IND approval for a clinical study of chronic obstructive pulmonary disease subjects. The primary focus of this paper is on the technical/engineering development of the polarizer, with the explicit goals of facilitating the adaptation of design features and operative modes into other laboratories, and of spurring the further advancement of HP-gas MR applications in biomedicine.  相似文献   

7.
A Coherent Inc. Ti:sapphire laser MBR-110 is locked to a temperature-controlled high finesse Fabry-Perot cavity supported on an isolated platform. The linewidth is measured by locking the laser to another similar super-cavity at the same time and the heterodyne beatnote between two laser beams that locked to different cavities determines the linewidth. The result shows that the laser's linewidth is suppressed to be 41 Hz. The long-term drift is measured with a femtosecond comb and determined to be ~ 0.1 Hz/s. This laser is used to probe the 4S1/2-3D5/2 clock transition of a single 40Ca+ ion. The Zeeman components of the clock transition with a linewidth of 160 Hz have been observed.  相似文献   

8.
We outline an approach to mode selection in a microchip laser through judicious shaping of the pump light to create a high modal overlap with the desired mode. We demonstrate the principle by creating a donut-shaped pump profile in the focal plane of a converging lens, and use this profile to longitudinally pump a monolithic microchip laser where the output is a Laguerre-Gaussian mode of radial index p = 0 and azimuthal index l = 1 (LG0l), or vortex beam, of power ~ 12 mW with a slope efficiency of 17%. This approach of diffractive pump shaping in the Fourier domain is advantageous as it allows for high pump intensity even with low pumping powers, thus ensuring sufficient gain is achieved for laser oscillation.  相似文献   

9.
Two-sample (Allan) variance with a modified algorithm was applied to the determination of the experimental linewidth of a thermoelectrically-cooled continuous-wave distributed feedback quantum cascade laser at a wavelength of 4.333 μm. From successive laser transmittance scans over the CO2 ν3, (0111 − 0110) P(33) absorption line at 2307.653 cm− 1, two-sample variances were calculated for the laser frequency difference between different points on the sides of the absorption peak. From the minimum two-sample variance of the laser frequency difference between two adjacent points (5 μs between the points) on the same side of the absorption line the experimental laser linewidth was estimated to be less than 36(7) kHz at a laser power of ~ 25 mW, a laser current of 976 mA and a laser temperature of + 19.5 °C.  相似文献   

10.
Pure and Mg doped CaF2 single crystals grown by the Bridgman method were irradiated with gamma rays (γ-rays) for doses ranging from 97 Gy to 9.72 KGy. The pristine samples showed minimal absorption indicating the purity of the samples. The γ-irradiated pure CaF2 crystals showed prominent and strong absorption with a peak at ~ 374 nm besides three weak ones at ~ 456, 523 and 623 nm. However γ-rayed Mg doped crystals showed a prominent absorption with a strong peak at ~ 370 nm and a broad one at ~ 530 nm. The absorption indicated the generation of F and F-aggregate centers in the irradiated crystals. The photoluminescence (PL) emission spectrum of both pure and Mg doped crystals showed prominent emission at ~ 390 nm when they were excited at ~ 250 nm. Also, when the samples were excited at 323 and 363 nm strong emissions were observed at ~ 430 and 422 nm respectively. The optical absorption and PL intensities were found to increase with increase in dose.  相似文献   

11.
We investigate theoretically the dynamics of three low-order transverse modes in a small-area vertical cavity surface emitting laser. We demonstrate the spontaneous breaking of axial symmetry of the transverse field distribution in such a device. In particular, we show that if the linewidth enhancement factor is sufficiently large dynamical regimes with broken axial symmetry can exist up to very high diffusion coefficients ~ 10 μm2/ns.  相似文献   

12.
We report effective formation of population gratings in ytterbium-doped fibers by coherent light at 976 nm, i.e. at the wavelength that is typically utilized for optical pumping of these fibers. The dynamic gratings need sub-mW cw laser power to be recorded and have comparable amplitude (absorption) and phase (refractive index) components. Given the spontaneous relaxation time of a Yb3+ meta-stable level of ~ 0.8 ms, the grating formation time proved also to be in the sub-ms region with the phase grating component significantly slower than the amplitude one.  相似文献   

13.
We report the static and dynamic properties of an all-optical inverter based on an 850 nm Vertical Cavity Semiconductor Optical Amplifier (VCSOA). The inverter exhibits low switching power requirements (~ 15 μW), large on/off contrast ratio (> 11 dB), and high speed operation (~ 1.4 GHz). Large and small signal measurements show that the speed of operation and the on/off contrast ratio improve with increased bias current. This holds important prospects for the development of VCSOA-inverters for high-speed, low-power optical logic applications. Finally, a theoretical model of the VCSOA-inverter has been employed giving good agreement with experiments.  相似文献   

14.
A sensor has been fabricated by the integration of a fiber Bragg gating sensor (FBGs) with a fiber Fabry-Perot (F-P) sensor fabricated by etching method. In the integrated sensor, the FBG was used to measure temperature, while the fiber Fabry-Perot interferometer sensor (FFPIs) was used for strain measurement. Wavelength decoding for FBG and peak tracking for FFPI was employed for demodulation, respectively. The result showed that the temperature and strain sensitivity for the integrated sensor is ~ 2.7 pm/μεand ~ 9.3 pm/°C, respectively.  相似文献   

15.
In this paper we revisit the third harmonic generation from a femtosecond laser filament in air and its significant enhancement (~ 100 times) with a intercepting pump pulse, which has been reported very recently. The enhanced third harmonic is studied as a function of the pulse polarization, time delay between the pump and signal pulses, laser pulse energy, etc. We provide an explanation for the enhancement of third harmonic based on a quenching of interference effects present near filamentation threshold. Simulations based on a two-color propagation code reproduce well the experimental observations and confirm our interpretation.  相似文献   

16.
Borosilicate glass (BK7) is a widely-used material in integrated optics devices and in the optical communications industry. We report on laser-written waveguiding in BK7 glass using a low-repetition-rate (1 kHz) laser producing 40 fs pulses of 800 nm light. A 500 μm slit is used to write structures 100 μm below the glass surface. These waveguides show strong guidance at 635 nm, with an index contrast of 3 × 10− 4 and a propagation loss of ~ 0.5 dB/cm. We measured the change in refractive index for a range of writing conditions as quantified in terms of energy dose; there is an energy dose window (> 0.6 μJ μm− 3 and < 1.5 μJ μm− 3) within which the written structures show guidance.  相似文献   

17.
Ho3+-doped low-phonon-energy heavy-metal gallate glasses (LKBPBG) have been prepared and efficient 1.199 μm emission originating from the 5I6 → 5I8 radiative transition has been observed under 900 nm excitation. The spontaneous emission probability and the maximum stimulated emission cross-section were derived to be 294.31 s− 1 and 3.46 × 10− 21 cm2, respectively. The ratio of quantum yields between ~ 1.2 and ~ 2.0 μm emissions was identified to be 16%, demonstrating that the 5I6 → 5I8 transition is favorable for optical amplification. The maximum gain coefficient of 1.84 dB/cm at 1.199 μm wavelength was anticipated in the ideal status. These results indicate that the Ho3+-doped LKBPBG glasses have a promising potential for the development of ~ 1.2 μm signal amplifier devices.  相似文献   

18.
A large mode area photonic crystal fiber (LMA PCF) with an effective area of 180 μm2 is used to generate a high energy, micro-joule range, flat, octave spanning supercontinuum (SC) extending from ~ 600 nm to ~ 1720 nm. A train of femtosecond pulses from a widely-tunable parametric amplifier pumped by a Ti:Sapphire regenerative amplifier system are coupled into a 20 cm length of LMA PCF generating a SC of 1.4 μJ energy. We present an experimental study of the high energy SC as a function of the input power and the pumping wavelength. The spectrum obtained at a pump wavelength of 1260 nm presents spectral flatness variation less than 12 dB over more than 1.1 octave bandwidth. The physical processes behind the SC formation are described in the normal and the anomalous dispersion regions. Our experimental results are successfully compared with the numerical solution of the nonlinear Schrödinger equation.  相似文献   

19.
We demonstrate a single-shot measurement technique based on spectral interferometry (SI) for measuring the complete intensity and phase vs. time of extremely complex ultrashort laser pulses. Ordinarily, such a method would require an extremely-high-resolution spectrometer, but, by temporally interleaving many SI measurements, each using a different reference-pulse delay, our method overcomes this need. It involves introducing a transverse time delay into the reference pulse by tilting its pulse front transversely to the spectrometer dispersion plane. The tilted reference pulse then gates the unknown pulse by interfering with it at the image plane of a low-resolution imaging spectrometer, yielding an effective increase in the delay range and spectral resolution—by a factor of 30 in our proof-of-principle implementation. Our device achieved a temporal resolution of ~ 130 fs and a temporal range of 120 ps. This simple device has the potential to measure even longer and more complex pulses.  相似文献   

20.
In this paper, the authors introduce an enhanced photovoltaic device with nanohole arrays only in its antireflection coating. These nanoholes can improve light trapping efficiency as well as photoelectric conversion efficiency of the device. The authors analyze the light absorption of the devices with nanohole arrays by Finite-Difference Time Domain method and calculate the photoelectric conversion efficiency. The results show that the nanohole arrays can improve the light trapping more efficiently than the Si3N4 antireflection coating, especially, in 400-600 nm spectral range. Nanohole arrays with different characteristic parameters were fabricated in the antireflection coating layer of a Φ200 μm Si detector by using focused-ion beam system. With the optimized nanohole arrays, the enhancements factor of the experimental sample's photoelectric conversion efficiency is ~ 16% within the 400-600 nm spectral range and ~ 10% within the 400-1100 nm spectral range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号