首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pure perovskite phase and crack-free KTa0.5Nb0.5O3 thin films were prepared on Pt/Ti/SiO2/Si substrates by pulsed laser deposition. The structure and orientation were analyzed by X-ray diffraction. The optical properties were investigated by an ellipsometer. The relationship between the refractive index dispersive behavior and internal structure was analyzed by Sellmeier dispersion model and single electronic oscillator approximation. The parameters of room temperature monomial Sellmeier oscillator were calculated. And the refractive index dispersive parameter E0/S0 of KTa0.5Nb0.5O3 thin films on Pt/Ti/SiO2/Si substrates is (6.72 ± 0.04) × 10−14 eV m2, which is consistent with those of KTN crystals and compounds with ABO3 perovskite type structure.  相似文献   

2.
The structural, morphological and optical properties of CuAlS2 films deposited by spray pyrolysis method have been investigated. CuAlS2 in the form of films is prepared at different deposition conditions by a simple and economical spray pyrolysis method. The structural, surface morphology and optical properties of the films were analyzed by X-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscope (AFM) and absorbance spectra, respectively. The films were polycrystalline, crystallized in a tetragonal structure, and are preferentially orientated along the (1 1 2) direction. Grain size values, dislocation density, and d% error of CuAlS2 films were calculated. The optical band gap of the CuAlS2 film was found to be 3.45 eV. The optical constants such as refractive index, extinction coefficient and dielectric constants of the CuAlS2 film were determined. The refractive index dispersion curve of the film obeys the single oscillator model. Optical dispersion parameters Eo and Ed developed by Wemple-DiDomenico were calculated and found to be 3.562 and 12.590 eV.  相似文献   

3.
X-ray powder diffraction (XRD) of MgPc indicated that the material in the powder form is polycrystalline with monoclinic structure. Miller indices, h k l, values for each diffraction peak in XRD spectrum were calculated. Thermal evaporation technique was used to deposit MgPc thin films. The XRD studies were carried out for MgPc thin films where the results confirm the amorphous nature for the as-deposited films. While, polycrystalline films orientated preferentially to (1 0 0) plane with an amorphous background were obtained for films annealed at 623 K for 3 h. Optical properties of MgPc thin films were characterised by using spectrophotometric measurements of transmittance and reflectance in the spectral range from 190 to 2500 nm. The refractive index, n, and the absorption index, k, were calculated. According to the analysis of dispersion curves, the parameters, namely; the optical absorption coefficient (α), molar extinction coefficient (?molar), oscillator energy (Eos), oscillator strength (f), and electric dipole strength (q2) were also evaluated. The recorded absorption measurements in the UV-vis region show two well defined absorption bands of phthalocyanine molecule; namely the Q-band and the Soret (B-band). The Q-band showed its splitting characteristic (Davydov splitting), and ΔQ was obtained as 0.15 eV. The analysis of the spectral behaviour of the absorption coefficient (α), in the absorption region revealed indirect transitions. The transport and the near onset energy gaps were estimated as respectively 2.74 ± 0.02 and 1.34 ± 0.01 eV.  相似文献   

4.
CdSe thin films were deposited on glass substrates using Successive Ionic Layer Adsorption and Reaction (SILAR) method at room temperature and ambient pressure. The relationship between refractive index and energy bandgap was investigated. The film thickness effect on the structural, morphological, optical and electrical properties of CdSe thin films was investigated. The X-ray diffraction (XRD) and scanning electron microscopy (SEM) studies showed that all the films exhibit polycrystalline nature with hexagonal structure and are covered well with glass substrates. The crystalline and surface properties of the films improved with increasing film thickness. The optical absorption studies revealed that the films are found to be a direct allowed transition. The energy bandgap values were changed from 1.93 to 1.87 eV depending on the film thickness. The electron effective mass (me?/mo), refractive index (n), optical static and high frequency dielectric constant (εo, ε) values were calculated by using the energy bandgap values as a function of the film thickness. The resistivity of the films changed between 106 and 102 Ω-cm with increasing film thickness at room temperature.  相似文献   

5.
Zinc sulfide thin films were prepared on glass substrates at room temperature using a chemical bath deposition method. The obtained films were annealed at temperatures ranging from 100 to 500 °C in steps of 100 °C for 1 h. The films were characterized by X-ray diffraction (XRD), Raman spectroscopy, energy dispersive X-ray analysis (EDX), optical absorption spectra, and electrical measurements. X-ray diffraction analysis indicates that the deposited films have an amorphous structure, but after being annealed at 500 °C, they change to slightly polycrystalline. The optical constants such as the refractive index (nr), the extinction coefficient (k), and the real (ε1) and imaginary (ε2) parts of the dielectric constant are calculated depending on the annealing temperature. Aside from the ohmic characteristics of the I-V curve, a nonlinear I-V curve owing to the Schottky contact is also found, and the barrier heights (?bn) for Au/n-ZnS and In/n-ZnS heterojunctions are calculated. The conductivity type was identified by the hot-probe technique.  相似文献   

6.
Thin films of ZnO have been prepared on glass substrates at different thicknesses by spray pyrolysis technique using 0.2 M aqueous solution of zinc acetate. X-ray diffraction reveals that the films are polycrystalline in nature having hexagonal wurtzite type crystal structure. The resistivity at room temperature is of the order 10−2 Ω cm and decreased as the temperature increased. Films are highly transparent in the visible region. The dependence of the refractive index, n, and extinction coefficient, k, on the wavelength for a sprayed film is also reported. Optical bandgap, Eg, has been reported for the films. A shift from Eg = 3.21 eV to 3.31 eV has been observed for deposited films.  相似文献   

7.
Al-doped zinc oxide (AZO) thin films have been prepared by spray pyrolysis (SP) technique of zinc acetate and aluminium nitrate, and the effect of thickness on structural and optical properties has been investigated. The structural and optical characteristics of the AZO films were examined by X-ray diffraction (XRD) and double-beam spectrophotometry. These films, deposited on glass substrates at an optimal substrate temperature (TS = 450 °C), have a polycrystalline texture with a hexagonal structure. Transmission measurements showed that for visible wavelengths, the AZO films have an average transmission of over 90%. The optical parameters have been calculated. The dependence of the refractive index, n, and extinction coefficient, k, on the wavelength for the sprayed films is also reported. Optical band gap of AZO is 3.30 and 3.55 eV, respectively, depending on the film thicknesses.  相似文献   

8.
CdS doped TiO2 thin films (with CdS content=0, 3, 6, 9 and 12 at%) were grown on glass substrates. The X-ray diffraction analysis revealed that the films are polycrystalline of monoclinic TiO2 structure. The microstructure parameters of the films such as crystallite size (Dν) and microstrain (e) are calculated. Both the crystallites size and the microstrain are decreased with increasing CdS content. The optical constants have been determined in terms of Murmann's exact equations. The refractive index and extinction coefficient are increased with increasing CdS content. The optical band gap is calculated in the strong absorption region. The possible optical transition in these films is found to be an allowed direct transition. The values of Egopt are found to decrease as the CdS content increased. The films with 3 at% CdS content have better decomposition efficiency than undoped TiO2. The films with 6 at% and 9 at% CdS content have decomposition efficiency comparable to that of undoped TiO2, although they have lower band gap. The CdS doped TiO2 could have a better impact on the decomposing of organic wastes.  相似文献   

9.
Zinc telluride thin films with different thicknesses have been deposited by electron beam gun evaporation system onto glass substrates at room temperature. X-ray and electron diffraction techniques have been employed to determine the crystal structure and the particle size of the deposited films. The stoichiometry of the deposited films was confirmed by means of energy-dispersive X-ray spectrometry. The optical transmission and reflection spectrum of the deposited films have been recorded in the wavelength optical range 450-2500 nm. The variation of the optical parameters, i.e. refractive index, n, extinction coefficient, k, with thickness of the deposited films has been investigated. The refractive index dispersion in the transmission and low absorption region is adequately described by the single-oscillator model, whereby the values of the oscillator strength, oscillator position, dispersion parameter as well as the high-frequency dielectric constant were calculated for different film thickness. Graphical representations of the surface and volume energy loss function were also presented.  相似文献   

10.
Iodine doped ZnSe thin films were prepared onto uncoated and aluminium (Al) coated glass substrates using vacuum evaporation technique under a vacuum of 3 × 10−5 Torr. The composition, structural, optical and electrical properties of the deposited films were analyzed using Rutherford backscattering spectrometry (RBS), X-ray diffraction (XRD), spectroscopic ellipsometry (SE) and study of I-V characteristics, respectively. In the RBS analysis, the composition of the deposited film is calculated as ZnSeI0.003. The X-ray diffractograms reveals the cubic structure of the film oriented along (1 1 1) direction. The structural parameters such as crystallite size, strain and dislocation density values are calculated as 32.98 nm, 1.193 × 10−3 lin−2 m−4 and 9.55 × 1014 lin/m2, respectively. Spectroscopic ellipsometric (SE) measurements were also presented for the prepared iodine doped ZnSe thin films. The optical band gap value of the deposited films was calculated as 2.681 eV by using the optical transmittance measurements and the results are discussed. In the electrical studies, the deposited films exhibit the VCNR conduction mechanism. The iodine doped ZnSe films show the non-linear I-V characteristics and switching phenomena.  相似文献   

11.
The results of gadolinium (Gd)-doped barium titanate (BaTiO3) thin films prepared by laser ablation on glass and silicon substrates are reported. Rutherford backscattering (RBS) analyses carried out on glass samples indicated the substitution of barium (Ba) by gadolinium (Gd) after annealing, leading to a film with composition Ba0.76TiGd0.01O2.5. There is a reduction in the thickness from 2.21 to 2.02 microns for as-deposited and annealed films. The films on silicon showed a higher degree of crystallinity compared to that of glass substrates due to increased annealing temperature. The average grain size calculated using the X-ray diffraction (XRD) pattern from silicon substrates was 30 nm. The film has a tetragonal structure with a “c/a” ratio of 1.03 signifying that the incorporation of Gd in BaTiO3 led to the elongation of the c-axis. The percentage transmittance reduced from 80 to 50% due to annealing and this is probably due to structural changes in the film. Swanepoel envelope method employed on the interference fringes of the transmittance pattern led to the determination of the variation of the refractive index with wavelength. Sellmier single oscillator model was applied to determine the optical constants of the films on glass substrates. Bandgap analyses carried out showed the reduction in bandgap with annealing and also the possibility that Gd incorporation has modified the film chemistry leading to the existence of direct (4.35 eV) and indirect (3.88 eV) allowed transitions in the annealed films. Dielectric property measurement carried out under ambient conditions gave a relaxation time τ of 1.6×10−4 s and conduction by small polaron with the onset of polaron conduction set at about 7 kHz. It is conjectured that these properties, especially the high refractive index and the high bandgaps, can make Gd-doped BaTiO3 a good candidate for optoelectronic applications.  相似文献   

12.
FTIR and variable angle spectroscopic ellipsometer in conjunction with computer simulation were employed to investigate the electron beam evaporated SiOxNy thin films. FTIR showed a large absorption band located between 600 and 1250 cm−1, which indicates that Si-O and Si-N bands are overlap in SiOxNy films. A three layers model was used to fit the calculated data to the experimental ellipsometric spectra. The main layer was described by Cauchy model while the interface layer and the surface layer were described using Tauc-Lorenz oscillator and Bruggeman effective medium approximation, respectively. The thickness, the refractive index and the extinction coefficient were accurately determined. The refractive index at 630 nm was found to increase from 1.74 to 1.85 with increasing the film thickness from 191.6 to 502.2 nm. The absorption coefficient was calculated from the obtained extinction coefficient values and it has been used to calculate the Tauc and Urbach energies.  相似文献   

13.
Electron beam gun technique was used to prepare Ta2O5 thin films onto infrasil substrates of thicknesses 333 and 666 nm. The structure characterization was investigated using X-ray diffraction patterns. Transmittance measurements in the wavelength range (240-2000 nm) were used to calculate the refractive index n and the absorption index k depending on Swanepole's method. The dispersion curve of the refractive index shows an anomalous dispersion in the absorption region and a normal one in the transparent region. The analysis of the optical absorption data revealed that the optical band gap Eg was indirect transition. It was found that the refractive index dispersion data obeyed the single oscillator of the Wemple-DiDomenico model, from which the dispersion parameters (Eo and Ed) and the high frequency dielectric constant were determined. The electric free carrier susceptibility and the carrier concentration to the effective mass ratio were estimated according to the model of Spitzer and Fan. Graphical representation of the relaxation time as a function of photon energy was also presented.  相似文献   

14.
In this work the optical and the gas sensing properties of thick TiO2 waveguide films, produced by pulsed laser deposition, were investigated by m-line spectroscopy. The films were deposited on (0 0 1) SiO2 substrates at temperature of 100 °C. The thickness of the films was measured to be in the range from 650 to 1900 nm and the roughness increases from 5 to 14.6 nm. High quality mode spectra, consisted of thin and bright TE and TM modes, were observed in the films with thickness up to 1200 nm. All the films revealed anisotropic optical properties. Gas sensitivity of the films to CO2 was examined at room temperature on the basis of the variations of the refractive index. CO2 concentration of 3 × 104 ppm was detected, which corresponds to a refractive index variation of about 1 × 10−4. The crystal structure and the optical transmittance of the films were also presented and discussed.  相似文献   

15.
In this work, we extracted the film's hardness (HF) of ultra-thin diamond-like carbon layers by simultaneously taking into account the tip blunting and the substrate effect. As compared to previous approaches, which did not consider tip blunting, this resulted in marked differences (30-100%) for the HF value of the thinner carbon coatings. We find that the nature of the substrate influences this intrinsic film parameter and hence the growth mechanisms. Moreover, the HF values generally increase with film thickness. The 10 nm and 50 nm thick hydrogenated amorphous carbon (a-C:H) films deposited onto Si have HF values of, respectively, ∼26 GPa and ∼31 GPa whereas the 10 nm and 50 nm thick tetrahedral amorphous carbon (t-aC) films deposited onto Si have HF values of, respectively, ∼29 GPa and ∼38 GPa. Both the a-C:H and t-aC materials also show higher density and refractive index values for the thicker coatings, as measured, respectively by X-ray reflectometry and optical profilometry analysis. However, the Raman analysis of the a-C:H samples show bonding characteristics which are independent of the film thickness. This indicates that in these ultra-thin hydrogenated carbon films, the arrangement of sp2 clusters does not relate directly to the hardness of the film.  相似文献   

16.
The chromium and titanium oxynitride films on glass substrate were deposited by using reactive RF magnetron sputtering in the present work. The structural and optical properties of the chromium and titanium oxynitride films as a function of power variations are investigated. The chromium oxynitride films are crystalline even at low power of Cr target (≥60 W) but the titanium oxynitride films are amorphous at low target power of Ti target (≤90 W) as observed from glancing incidence X-ray diffraction (GIXRD) patterns. The residual stress and strain of the chromium oxynitride films are calculated by sin2 ψ method, as the average crystallite size decreases with the increase in sputtering power of the Cr target, higher stress and strain values are observed. The chromium oxynitride films changes from hydrophilic to hydrophobic with the increase of contact angle value from 86.4° to 94.1°, but the deposited titanium oxynitride films are hydrophilic as observed from contact angle measurements. The changes in surface energy were calculated using contact angle measurements to substantiate the hydrophobic properties of the films. UV-vis and NIR spectrophotometer were used to obtain the transmission and absorption spectra, and the later was used for determining band gap values of the films, respectively. The refractive index of chromium and titanium oxynitride films increases with film packing density due to formation of crystalline chromium and titanium oxynitride films with the gradual rise in deposition rate as a result of increase in target powers.  相似文献   

17.
Radio-frequency magnetron sputtering technique is used to deposit Ba0.65Sr0.35TiO3 (BST) thin films on fused quartz substrates. In order to prepare the high-quality BST thin films, the crystallization and microstructure of the films were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM). More intense characteristic diffraction peaks and better crystallization can be observed in BST thin films deposited at 600 °C and subsequently annealed at 700 °C. The refractive index of the films is determined from the measured transmission spectra. The dependences of the refractive index on the deposition parameters of BST thin films are different. The refractive index of the films increases with the substrate temperature. At lower sputtering pressure, the refractive index increases from 1.797 to 2.197 with pressure increase. However, when the pressure increases up to 3.9 Pa, the refractive index reduces to 1.86. The oxygen to argon ratio also plays an important effect on the refractive index of the films. It has been found that the refractive index increases with increase in the ratio of oxygen to argon. The refractive index of BST thin films is strongly dependent on the annealing temperature, which also increases as the annealing temperature ascends. In a word, the refractive index of BST thin films is finally affected by the films’ microstructure and texture.  相似文献   

18.
We report on the femtosecond laser micromachining of photo-induced embedded diffraction grating in flexible Poly (Dimethly Siloxane) (PDMS) plates using a high-intensity femtosecond (130 fs) Ti: sapphire laser (λp = 800 nm). The refractive index modifications with diameters ranging from 2 μm to 5 μm were photo-induced after the irradiation with peak intensities of more than 1 × 1011 W/cm2. The graded refractive index profile was fabricated to be a symmetric around from the center of the point at which femtosecond laser was focused. The maximum refractive index change (Δn) was estimated to be 2 × 10−3. By the X-Y-Z scanning of sample, the embedded diffraction grating in PDMS plate was fabricated successfully using a femtosecond laser.  相似文献   

19.
This paper reports the photosensitivity of poly(methyl methacrylate) (PMMA) and its copolymer doped with trans-4-stilbenemethanol. UV irradiation of the doped-PMMA at 325 nm induced the trans- to cis-isomerization of the dopant. This process was confirmed by 1H NMR spectra of trans-4-stilbenemethanol in CDCL3 solvent before and after irradiation. The isomerization can be initiated by the irradiation with an intensity of 0.62 mW/cm2. Photo-induced refractive index change of −0.0024 was obtained when a PMMA copolymer film doped with 5.1 wt% dopant was exposed to 325 nm light. Lorentz-Lorenz equation was used to estimate the refractive index of a trans-4-stilbenemethanol-PMMA composite and a trans-4-stilbenemethanol-PMMA copolymer composite from the mole refraction and van der Waals volume of each component. A slight elevation of molecular packing coefficient (K) for PMMA and its copolymer containing the dopant implies a denser aggregation as compared to the polymer without the dopant. Long period gratings were created in doped-PMMA films and doped-PMMA copolymer fibers using amplitude mask technique. Gratings were confirmed by microscopic observation and diffraction patterns.  相似文献   

20.
Ba(ZrxTi1−x)O3 (BZT) (x = 0.20 and 0.30) thin films are deposited on Pt(1 1 1)/Ti/SiO2/Si(1 0 0) substrate by sol-gel method. X-ray diffraction patterns show that the thin films have a good crystallinity. Optical properties of the films in the wavelength range of 2.5-12 μm are studied by infrared spectroscopic ellipsometry (IRSE). The optical constants of the BZT thin films are determined by fitting the IRSE data using a classical dispersion formula. As the wavelength increases, the refractive index decreases, while the extinction coefficients increase. The effective static ionic charges are derived, which are smaller than that in a purely ionic material for the BZT thin films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号