首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper introduces a dual-path heterodyne Mach-Zehnder interferometer adopted for wavelength shift determinations. In this interferometer, two parallel incident beams are separated into two interference pairs which are then recombined to generate two interference signals. A parallel plate is placed on the path of one wave of an interference pair, so the phase difference of the interference signals is a function of the plate and beam wavelength, and the interferometer is thus able to determine the wavelength shift of the incident beam. A setup constructed to realize the proposed interferometer is described, it shows that the interferometer has a resolution up to 1.1 × 10−10 (λ2/nm), and the experimental results of applying this setup not only agree the validity of the interferometer but also indicate that the interferometer has a stability of 6.5 × 10−10 (λ2/nm).  相似文献   

2.
Si/SiO2 superlattices were prepared by magnetron sputtering, and the deposition temperature and annealing temperature had a great influence on the superlattice structure. In terms of SEM images, the mean size of Si nanocrystals annealed at 1100 °C is larger than that of nanocrystals annealed at 850 °C. It was found that the films deposited at room temperature are amorphous. With increasing deposition temperature, the amorphous and crystalline phases coexist. With increasing annealing temperature, the Raman intensity of the peak near 470 cm−1 decreases, and the intensity of that at 520 cm−1 increases. Also, on increasing the annealing temperature, the Raman peak near 520 cm−1 shifts and narrows, and asymmetry emerges. A spherical cluster is used to model the nanocrystals in Si/SiO2 superlattices, and the observed Raman spectra are analyzed by combining the effects of confinement on the phonon frequencies. Raman spectra from a variety of nanocrystalline silicon structures were successfully explained in terms of the phonon confinement effect. The fitted results agreed well with the experimental observations from SEM images.  相似文献   

3.
Laser interferometer gravitational wave detectors require very high optical quality test masses. We report the bulk Rayleigh scattering in high quality fused silica samples. Results show that the scattering of the high quality fused silica is similar for various grades of fused silica from Heraeus. The total integrated scattering is about 0.7 ppm cm− 1at 1064 nm wavelength, which agrees with the theoretical value calculated using known fused silica parameters. All samples show Rayleigh scattering ratio inhomogeneity of ~ 4%.  相似文献   

4.
By means of the interpolation and iteration methods to deal with the rate equations and the light propagation equations for the Er3+/Yb3+ codoped waveguide amplifier (EYCDWA), the gain characteristics in the forward, backward, and bidirectional pumped styles are analyzed. In order to obtain high gain, some parameters such as waveguide length, dopant concentration, pump power, and signal power are optimized. The results show that the pump power and signal power are about 50 mW and 1 mW, respectively, the gain is about 6.5 dB for the 2.0 cm-long EYCDWA with an Er3+ ion concentration of 1.5 × 1026 m–3 and Yb3+ ion concentration of 1.9 × 1027 m–3. Moreover, the upconversion is investigated for the designed device.  相似文献   

5.
We have demonstrated an adjustable double-clad Yb3+-doped fiber laser using a double-pass Mach-Zehnder interferometer. The laser is adjustable over a range of 40 nm from 1064 nm to 1104 nm. By adjusting the state of the polarization controller, which is placed in the double-pass Mach-Zehnder interferometer, we obtained central lasing wavelengths that can be accurately tuned with controllable spacing between different tunable wavelengths. The laser has a side mode suppression ratio of 42 dB, the 3 dB spectral width is less than 0.2 nm, and the slope efficiencies at 1068 nm, 1082 nm and 1098 nm are 23%, 32% and 26%, respectively. In addition, we have experimentally observed tunable multi-wavelengths lasing output.  相似文献   

6.
We designed, fabricated and tested a multipath Herriott cell (or off-axis spherical mirror interferometer) to achieve low temperature absorption measurements. The cell is fabricated entirely from copper, and the 15 cm radius of curvature copper mirrors have gold coated reflective surfaces. The cell was tested at temperatures between 296 and 20 K with a folded absorption path length of 5.37 m utilizing a lead salt tunable diode laser. Short term temperature stability (1 h) of the Herriott cell is better than 0.005 K under normal operating conditions with a temperature uniformity better than 0.01 K (not measurable). The cell was tested by performing collisional cooling experiments on 13C16O2 in helium at temperatures between 70 and 20 K and by performing more traditional pressure broadening and shift measurements on molecular infrared absorption lines at temperatures between 300 and about 80 K on 13C16O2 and methane.  相似文献   

7.
A temperature-independent highly-sensitive curvature sensor by using a tapered-photonic crystal fiber (PCF)-based Mach-Zehnder interferometer (MZI) is proposed and experimentally demonstrated. It is fabricated by sandwiching a tapered-PCF between two standard single mode fibers (SMFs) with the air holes of the PCF in the fusion splicing region being fully collapsed. The tapering of PCF is found to enhance the sensitivity significantly. Large curvature sensitivities of 2.81 dB/m−1 and 8.35 dB/m−1 are achieved in the measurement ranges of 0.36-0.87 m−1 and 0.87-1.34 m−1, respectively, with the resolution of 0.0012 m−1 being guaranteed. The proposed sensor also shows negligible temperature sensitivity less than 0.006 dB/°C.  相似文献   

8.
17O magnetic resonance imaging (MRI) using a conventional pulse sequence was explored as a method of quantitative imaging towards regional oxygen consumption rate measurement for tumor evaluation in mice. At 7 T, fast imaging with steady state (FISP) was the best among gradient echo, fast spin echo and FISP for the purpose. The distribution of natural abundance H217O in mice was visualized under spatial resolution of 2.5 × 2.5 mm2 by FISP in 10 min. The signal intensity by FISP showed a linear relationship with 17O quantity both in phantom and mice. Following the injection of 5% 17O enriched saline, 17O re-distribution was monitored in temporal resolution down to 5 sec with an image quality sufficient to distinguish each organ. The image of labeled water produced from inhaled 17O2 gas was also obtained. The present method provides quantitative 17O images under sufficient temporal and spatial resolution for the evaluation of oxygen consumption rate in each organ. Experiments using various model compounds of R-OH type clarified that the signal contribution of body constituents other than water in the present in vivo17O FISP image was negligible.  相似文献   

9.
A Sagnac interferometer with a long-period fiber grating (LPG) inscribed in the polarization-maintaining fiber (PMF) is proposed and experimentally demonstrated for simultaneous measurement of strain and temperature. Due to the different responses of the LPG and the Sagnac interferometer to strain and temperature, simultaneous measurement can be achieved by monitoring the wavelength shifts and the intensity changes of a resonance dip of the sensor setup. The experimental results show that the achieved sensitivities to strain and temperature are 6.4 × 10− 3 dB/με and 0.65 nm/°C, respectively.  相似文献   

10.
This paper proposes a design for all-optical NOR logic gate, based on Mach-Zehnder interferometer (MZI) using quantum-dot semiconductor optical amplifier (QD-SOA). In this regard, a theoretical model for an ultrafast all-optical signal processor is developed using QD-SOA to achieve high bit rate operation. We have demonstrated the NOR gate operation in two cases of with and without an optical control pulse. Simulations have been carried out at data bit rates 160 Gb/s, 200 Gb/s, and 250 Gb/s for the case that control pulse is not applied, and also at data bit rates 1 Tb/s and 2 Tb/s in presence of control pulse which leads to improvement of gain recovery time and ultrafast NOR logic operation. In addition, quality factors of the output signals in presence and without the control pulse at different bit rates with different bias currents have been investigated for pseudo-random binary sequence (PRBS) of word length 28–1.  相似文献   

11.
We have built an accurate wavelength meter based on a Michelson interferometer characterized by a high stability velocity moving system. The unknown wavelength is determined from the Doppler frequency shifts of the output beams of the Michelson interferometer. The reference laser is a frequency stabilized helium-neon laser. A counting resolution of 2.6 × 10−9 for an integration time of 30 s has been obtained. The apparatus has been used to determine the wavelength of a second frequency stabilized helium-neon laser and the result has been compared to those given by two different methods: frequency beating in regards to the national reference and using a commercially available scanning-Michelson wavemeter. Taking into account the statistical errors, we achieved a relative accuracy on the unknown wavelength of 6.4 × 10−8 at 1σ.  相似文献   

12.
A sensor head consisting of a photonic crystal fiber (PCF)-based Mach-Zehnder interferometer (MZI) and a fiber Bragg grating (FBG) is proposed and experimentally demonstrated for simultaneous measurement of curvature and temperature. The MZI fabricated by splicing a short length of PCF between two single-mode fibers with the air-hole structure that completely collapsed near the splicing points, is sensitive to fiber bending and surrounding temperature, while the FBG is only sensitive to the later. Simultaneous measurement of curvature and temperature is therefore obtained. Sensitivities of 4.06 nm/m− 1 and 6.30 pm/°C are achieved experimentally for curvature and temperature, respectively. And the corresponding resolutions are 5.2 × 10− 4 m− 1 and 1.25 °C for curvature and temperature, respectively, based on the wavelength measurement resolution of 10 pm.  相似文献   

13.
Diffusion-weighted MRI images acquired at b-value greater than 1000 s mm− 2 measure the diffusion of a restricted pool of water molecules. High b-value images are accompanied by a reduction in signal-to-noise ratio (SNR) due to the application of large diffusion gradients. By fitting the diffusion tensor model to data acquired at incremental b-value intervals, we determined the effect of SNR on tensor parameters in normal human brains, in vivo. In addition, we also investigated the impact of field strength on the diffusion tensor model. Data were acquired at 1.5 and 3 T, at b-values 0, 1000, 2000 and 3000 s mm− 2 in twenty diffusion-sensitised directions. Fractional anisotropy (FA), mean diffusivity (MD) and principal eigenvector coherence (κ) were calculated from diffusion tensors fitted between datasets with b-values 0–1000, 0–2000, 0–3000, 1000–2000 and 2000–3000 s mm− 2. Field strength and b-value effects on diffusion parameters were analysed in white and grey matter regions of interest. Decreases in FA, κ and MD were found with increasing b-value in white matter. Univariate analysis showed a significant increase in FA with increasing field strength in highly organised white matter. These results suggest there are significant differences in diffusion parameters at 1.5 and 3 T and that the optimal results, in terms of the highest values of FA in white matter, are obtained at 3 T with a maximum b = 1000 s mm− 2.  相似文献   

14.
An optical receiver with high sensitivity and linearity specially designed for Giga-bit communications over small-bandwidth high-attenuation multimode plastic optical fiber is presented. An automatic gain control transimpedance amplifier and linear post amplifiers are used to maintain a good performance with multilevel modulation. Using multilevel signaling and large-diameter integrated photodiodes make the presented optical receiver suitable for large core plastic optical fiber. For a wavelength of 675 nm, a sensitivity of −26.3 dB m (BER = 10−9) at 500 Mb/s is presented by a binary signal. A data rate of 1 Gb/s and a sensitivity of −19.8 dB m (BER = 10−9) are achieved with four-level pulse amplitude modulation.  相似文献   

15.
The temperature dependence of the luminescence properties of nanocrystalline CdS/Mn2+ particles is investigated. In addition to an orange Mn2+ emission around 585 nm a red defect related emission around 700 nm is observed. The temperature quenching of both emissions is similar (Tq≈100 K). For the defect emission the reduction in the lifetime follows the temperature dependence of the intensity. For the Mn2+ emission however, the intensity decreases more rapidly than the lifetime with increasing temperature. To explain these observations a model is proposed in which the Mn2+ ions are excited via an intermediate state involving shallowly trapped (≈40 meV) charge carriers.  相似文献   

16.
To obtain the temperature-sensitive rate equations, a new energy level diagram of Praseodymium ion (Pr3+) in a glass host is modelled. By solving the modified rate equations, an analytical expression is presented to investigate the temperature dependence of the signal gain of a praseodymium-doped fiber amplifier (PDFA). It is seen that a change in the signal gain slightly depends on the variation of the distribution of Pr3+-ions in transitions 3F4 ↔ 3F3 with the temperature. Numerical calculations are carried out for the temperature range which is changing from −20 to +60 °C. Pr3+-doped ZBLAN fiber amplifier pumped at 1017 nm and Pr3+-doped sulfide fiber amplifier pumped at 1028 nm are selected as an application for the 1.3 μm signal wavelengths. It is also seen that the prediction of the model is in good agrement with their experimental results.  相似文献   

17.
The modified super-wide-angle Sagnac imaging interferometer (MSASII) based on liquid crystals on silicon (LCoS) is proposed as a novel device for the detection of the upper atmospheric wind field. This device employs the phase-only modulation (POM) of LCoS coupled with the MSASII, and can measure phase changes in multi-band emissions without moving mirror. It can be used to replace the conventional Michelson’s interferometer with step-moving mirror device. The optical path difference (OPD) equation of MSASII-LCoS is derived, and the four compensation conditions (field, chromatics, thermal and achromaticity of thermal compensations) are discussed within the scope of wind measurement. The real parameters of LCoS and optical glasses are selected for numerical simulation and analysis. Three aurora lines (732.0, 630.0 and 557.7 nm) are considered, and their phase variations are 3.61, 2.02 and 0.15 fringes at the same incident angle of 3°, respectively. The rate of change of OPD with temperature is the magnitude of 10−6 cm/K, and the corresponding phase variations are within 0.09 fringes. The accuracy of phase modulation can be 0.614×10−2 rad when LCoS of 10-bits is used. The novel model MSASII-LCoS shows its advantage for atmospheric wind measurement in the aspects of the overall structure, anti-vibration, operational flexibility and detection accuracy.  相似文献   

18.
The first stages of acetylene reaction with the Si(1 1 1)7 × 7 reconstructed surface kept at 600 °C are studied by recording scanning tunneling microscopy (STM) images during substrate exposure at a C2H2 pressure of 2 × 10−4 Pa (2 × 10−2 mbar). We observed the progressive substitution of the 7 × 7 reconstruction with a carbon induced Si(1 1 1)√3×√3R30° reconstruction characterized by an atomic distance of 0.75 ± 0.02 nm, very close to that of the silicon 7 × 7 adatoms. This means that a carbon enrichment of the silicon outermost layers occurs giving rise to the formation of a Si-C phase different from the √3×√3R30° reconstruction typical of Si terminated hexagonal SiC(0 0 0 1) surface with an atomic distance of 0.53 nm. To explain STM images, we propose a reconstruction model which involves carbon atoms in T4 and/or S5 sites, as occurring for B doped Si(1 1 1) surface. Step edges and areas around the silicon surface defects are the first regions involved in the reaction process, which spreads from the upper part of the step edges throughout the terraces. Step edges therefore, progressively flakes and this mechanism leads, for the highest exposures, to the formation of large inlets which makes completely irregular the straight edge typical of the Si(1 1 1)7 × 7 terraces. These observations indicate that there occurs an atomic diffusion like that driving the meandering effect. Finally, the formation of a few crystallites is shown also at the lowest acetylene exposures. This is the first STM experiment showing the possibility to have carbon incorporation in a Si(1 1 1) matrix for higher amounts than expected, at least up to 1/6 of silicon atomic layer.  相似文献   

19.
Early results from the Solenoidal Tracker At RHIC (STAR) using prototype forward calorimeters (FPD/FPD++) have shown that in d+Au collisions at $ \sqrt {s_{NN} } $ \sqrt {s_{NN} } = 200 GeV a stronger suppression of forward π 0 yield is observed than would be expected from shadowing effects. Exploratory measurements and observations can be qualitatively interpreted using the Color Glass Condensate (CGC) model to describe the colliding nucleus. A new detector, the Forward Meson Spectrometer (FMS), has been built to measure forward pion and photon production to quantify gluon suppression at low x in heavy nuclei over a large range in x and p T .  相似文献   

20.
We demonstrate the feasibility of a compact single-shot full-field time domain optical coherence tomography (OCT) for imaging dynamic biological sample in real-time. The system is based on a Linnik type polarization Michelson interferometer and a four-quadrature phase-stepper optics, which can simultaneously capture four quadraturely phase-stepped interferograms on a single CCD. Using a superluminescent diode as light source with center wavelength of 842 nm and spectral width of 16.2 nm, the system yields an axial resolution of 19.8 μm, and covers a field of view of 280 × 320 μm2 (220 × 250 pixels) with a transverse resolution of 4.4 μm by using a 10× microscope objective (0.3 NA). Three-dimensional OCT images of biological samples such as an onion slice and a diaptomus were obtained without any image averaging or pixel binning. In addition, in vivo depth resolved dynamic imaging was demonstrated to show the beating internal structure of a diaptomus with a fame rate of 5 fps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号