首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The self-mixing sensor based on Er3+–Yb3+ co-doped Distributed Bragg reflector fiber laser (EYDBR) has been demonstrated for detecting the effect of external objects scattering property on self-mixing signal. Results show that self-mixing interference inside fiber laser with short cavity length especially EYDBR fiber laser can keep high SNR with different types of scattering surfaces even the white print paper. Meanwhile, we have obtained a high and stable SNR at least 29.9 dB in measurements at incident angles smaller than 20°. In this way, the sensing system we demonstrate is suitable for vibration and displacement measurements, particularly for high-precision industrial measurements.  相似文献   

2.
Self-mixing sensing technique can be used for measuring distances, displacements, velocities and vibration. In this paper, for good sensitivity vibration measurement system, self-mixing vibrator using an all-fiberized configuration Er3+-Yb3+ Distributed Bragg Reflector (EYDBR) laser is proposed and investigated for the first time. Results obtained demonstrate that all-fiberized configuration EYDBR laser present a powerful tool for the advancement of self-mixing vibration sensor and provide a potential remote measurement of the vibration compared with the optical feedback in other traditional fiber lasers.  相似文献   

3.
《Current Applied Physics》2014,14(5):838-842
In this paper we present a novel method of gas leakage detection based on self-mixing interference with an extremely compact Er3+–Yb3+ codoped Distributed Bragg Reflector (EYDBR) fiber laser. According to the simulation and theoretical analysis of gas leakage of tank, we infer that the vibration frequency peak of tank caused by gas leakage increases with the internal pressure. In the experiment, the results agree with the theoretical prediction and the relevance of polynomial fitting about the spectrum peak of tank vibration and internal pressure is 0.99725. Thus, we can get the internal pressure of tank by measuring the vibration frequency peak of tank. Moreover, it has important significance in the prevention of the accident of flammable or explosive gas leakage.  相似文献   

4.
Liang Lu  Zhengting Du  Jingyu Yang  Benli Yu 《Optik》2012,123(18):1646-1649
We present a self-mixing interference model approach to stimulate the self-mixing interference in YDBR fiber laser with optical self-mixing interference operating in the weak feedback regime. The self-mixing interference model includes Yb3+ doped fibers pumped at 920 nm, with distributed Bragg reflector mirrors at both fiber ends and external reflector. Using the quasi-analytical YDBR fiber laser model and self-mixing three-mirror cavity model, the output power expression is deduced and the Peak-to-Peak values and asymmetry values of self-mixing waveform at different linewidth enhancement factor have been studied in detail.  相似文献   

5.
A novel multi-wavelength erbium-doped fiber laser operating in C-band is proposed and successfully demonstrated. The wavelength interval between the wavelengths is about 0.22 nm. The 3 dB bandwidth of the laser is about 0.012 nm, and the output power reaches 4.8 mW. By using a high birefringence fiber ring mirror (HiBi-FLM) and a tunable FBG, the laser realizes switchable and tunable characteristic. The mode hopping can be effectively prevented. Moreover, this laser can improve wavelength stability significantly by taking advantage of an un-pumped Er3+-doped fiber at the standing-wave section. The laser can operate in stable narrow-line-width with single-, dual-wavelength, and unstable triple-wavelength output at room temperature.  相似文献   

6.
We demonstrate a 22 dB all-fiber amplifier at 546 nm using Er3+-doped fluoride fiber by forward upconversion pumping of a 974 nm laser diode. The gain saturation effects and the power conversion efficiency of this amplifier are investigated in detail based on gain characteristics and numerical simulations.  相似文献   

7.
We demonstrate and optimize, for a mJ/ns release at the wavelength 1.064 μm, the operation of a compact laser system designed in the form of a hybrid, active-passive, Q-switched Nd3+:YAG/Cr4+:YAG microchip laser seeding an Yb-doped specialty multi-port fiber amplifier. As the result of the amplifier optimization, ∼1 mJ, ∼1 ns, almost single-mode pulses at a 1-10-kHz repetition rate are achieved, given by a gain factor of ∼19 dB for an 11-μJ input from the microchip laser. Meanwhile, a lower pulse energy, ∼120 μJ, but a much higher gain (∼25 dB) are eligible for the less powerful (0.35 μJ) input pulses.  相似文献   

8.
We have demonstrated an adjustable double-clad Yb3+-doped fiber laser using a double-pass Mach-Zehnder interferometer. The laser is adjustable over a range of 40 nm from 1064 nm to 1104 nm. By adjusting the state of the polarization controller, which is placed in the double-pass Mach-Zehnder interferometer, we obtained central lasing wavelengths that can be accurately tuned with controllable spacing between different tunable wavelengths. The laser has a side mode suppression ratio of 42 dB, the 3 dB spectral width is less than 0.2 nm, and the slope efficiencies at 1068 nm, 1082 nm and 1098 nm are 23%, 32% and 26%, respectively. In addition, we have experimentally observed tunable multi-wavelengths lasing output.  相似文献   

9.
The dual sideband optical carrier suppression (DSB-OCS) technique is employed in the optical carrier generation for 40 GHz radio over fiber (ROF) system. A dual electrode Mach-Zehnder modulator (DE-MZM) with the minimum transmission bias (MiTB) technique is employed to build the system. The results show that, a 40 GHz carrier is successfully generated with the amplitude up to −29 dBm and signal to noise ratio (SNR) of 35 dB and a high definition (HD) signal is successfully transmitted using the system. Finally, the bit error rate (BER) measurement is carried out for the system with 1.25 Gbps OOK signal showing an error free 40 GHz ROF system with almost no penalty between the back to back and 20 km fiber for a BER of 10−9.  相似文献   

10.
Photoluminescence (PL) with the bandwidth of 45 nm (1523-1568 nm at the level of 3 dB) was observed in amorphous Er2O3 films grown on to the quartz substrate by pulsed laser ablation of erbium oxide stoichiometric target. Optical transmission spectrum has been fitted to Swanepoel formula to determine the dispersion of refractive index and to extract resonance absorption peaks at 980 and 1535 nm. The maximum gain coefficient of 800 dB/cm at 1535 nm was estimated using McCumber theory and experimental spectrum of the resonance absorption. In 5.7 mm-long waveguide amplifier a theory predicts the spectral gain of 20 dB with 1.4 dB peak-to-peak flatness in the bandwidth of 31 nm (1532-1563 nm) when 73% of Er3+ ions are excited from the ground state to the 4I13/2 laser level. Strong broadband PL at room temperature and inherently flat spectral gain promise Er2O3 films for ultra-short high-gain optical waveguide amplifiers and integrated light circuits.  相似文献   

11.
The discovery of nanometer fringes in laser self-mixing interference   总被引:1,自引:0,他引:1  
We demonstrate the influences of optical feedback from an external mirror with high reflectivity in a He-Ne laser on self-mixing interference fringes and laser polarization states. When the external mirror is tilted to a certain level, the stable and uniform nanometer resolution fringes are generated. The fringe density is 40 times than that of the conventional self-mixing interference or two beam interference, and has still potential to be improved. Each self-mixing interference fringe corresponds to λ/80 displacement of the external mirror, i.e. 7.91 nm displacement of the external mirror. Moreover, when the movement direction of the external mirror is changed, the polarization flipping between two eigenstates will happen. The potential applications of the results are also discussed.  相似文献   

12.
We demonstrate passive Q-switching of short-length double-clad Tm3+-doped silica fiber lasers near 2 μm pumped by a laser diode array (LDA) at 790 nm. Polycrystalline Cr2+:ZnSe microchips with thickness from 0.3 to 1 mm are adopted as the Q-switching elements. Pulse duration of 120 ns, pulse energy over 14 μJ and repetition rate of 53 kHz are obtained from a 5-cm long fiber laser. As high as 530 kHz repetition rate is achieved from a 50-cm long fiber laser at ∼10-W pump power. The performance of the Q-switched fiber lasers as a function of fiber length is also analyzed.  相似文献   

13.
The gain flattening of Yb3+-doped fiber amplifier of 1053 nm band has been realized in experiment using three cascade 1 × 2 fused tapered fiber coupler. The gain flattening band is about 20 nm with less than 1 dB power fluctuation around 1053 nm, which is agree with our numerical stimulation results very well.  相似文献   

14.
While micro-ring lasers is a step forward for the miniaturization of fiber lasers, up-conversion quenching due to ion energy transfer may limit the device size and deteriorate system performance. The effect of Er3+ concentration quenching on the characteristics of silica-based Er-doped fiber (EDF) micro-ring laser was investigated. In particular, the dependence on Er3+ concentration and laser size of threshold pump power and quantum efficiency is discussed. To achieve high laser efficiency, it was found that ring diameter has to be ∼150 μm with ∼5 wt.% erbium concentration. The threshold value is increased by a factor of 340, for such laser characteristics compared with threshold power when up-conversion is not considered. Moreover, we show that detrimental effect due to up-conversion quenching can be reduced by careful micro-ring laser design.  相似文献   

15.
A novel shooting method with excellent simple control strategy is developed for solving the failure to convergence of the traditional shooting methods themselves in fiber lasers model. Compared with the published literature, the novel shooting method provides a clear physical understanding method for getting the threshold pump power and the exact results with given random functions in Yb3+-doped fiber lasers and Er3+-doped fiber lasers. Then, the results in Er3+-doped fiber lasers and Yb3+-doped fiber lasers demonstrate that the solutions using the novel shooting method has high accuracy of 10−8 W with several iteration steps, which have extended the applicable range of the end-pumped power even lower than 1 mW pump power. Furthermore, compared with 1480 nm pump for the threshold and slope efficiencies of the Er3+-doped fiber lasers, 978 nm fiber lasers can extend wider scope of application and be pump source in the coming future. Finally, the lower threshold and higher slope efficiency at 975 nm than those of 910 nm pump in Yb3+-doped fiber lasers, 975 nm pump laser provides for broad band excellent cladding pump source.  相似文献   

16.
The paper proposes a novel two stage L-band erbium doped fiber amplifier with forward–backward pumping scheme for transmission of 32 wavelength division multiplexed (WDM) channels. It is gain clamped with an in-line fiber Bragg grating (FBG) to provide flat gain over 45 nm by restricting and reutilizing amplified spontaneous emission (ASE). We demonstrate that it provides an efficient small signal gain with minimum noise figure of over 20 dB and 5.5 dB, respectively, in the L-band region (1565–1610 nm) by comparing with its forward and backward pumped counterparts with fixed Er3+ fiber length of 20 m for −30 dBm/channel input power. We also obtain the gain and noise figure dependence as a function of each of the Er3+ fiber lengths, pump power (both 1480 and 980 nm), and temperature. Hence a 10 nm region (1580–1590 nm) has been acknowledged where temperature variations become constricted for 30 °C variations (15–45 °C).  相似文献   

17.
We present experimental results involving controlled configuration mixing in two-photon spectroscopy of highly-excited states by exploiting a weak external electric field and collisions. The method has allowed new extensions to high members of the two-photon forbidden J = 3 odd-parity 5snf 1F3 and the J = 0, even-parity 5sns 1S0 Rydberg series of neutral strontium to be observed. We achieve resonant two-photon transverse excitation of a high density atomic jet by using a narrow bandwidth tunable dye laser in a heat pipe setup with sensitive ionization detection. Experimental term values are extended for the 5sns 1S0 series up to n = 46. By suitable exploitation of the composition and pressure of the buffer gases in conjunction with the electric field strength in the excitation region and the exciting laser beam intensity we have also extended observations up to n = 44 for the 5snf 1F3 series and up to n = 46 for the 5snp 1P1 series. Our results demonstrate a novel and remarkably simple experimental method to access high Rydberg states to which transitions are forbidden from the ground state by parity and other selection rules.  相似文献   

18.
We describe a compact, broadly tunable, continuous-wave (cw) Cr2+:ZnSe laser pumped by a thulium fiber laser at 1800 nm. In the experiments, a polycrystalline ZnSe sample with a chromium concentration of 9.5 × 1018 cm−3 was used. Free-running laser output was around 2500 nm. Output couplers with transmissions of 3%, 6%, and 15% were used to characterize the power performance of the laser. Best power performance was obtained with a 15% transmitting output coupler. In this case, as high as 640 mW of output power was obtained with 2.5 W of pump power at a wavelength of 2480 nm. The stimulated emission cross-section values determined from laser threshold data and emission measurements were in good agreement. Finally, broad, continuous tuning of the laser was demonstrated between 2240 and 2900 nm by using an intracavity Brewster cut MgF2 prism and a single set of optics.  相似文献   

19.
A new production method of long-period fiber-gratings using neither a laser nor a fine-positioning system was proposed. A low-pressure mercury lamp emitting 254 nm ultraviolet light was used as a light source. Hydrogen-loaded Ge-B co-doped fiber was exposed to the emission of the lamp through an amplitude mask. A coupling loss up to 23 dB was obtained for a grating period of 212 μm. The maximum coupling loss for a grating period of 460 μm was 18 dB. The growth rate of the refractive index change by mercury-lamp exposure was 1.3 × 10−4/h. The temperature and strain characteristics were measured and compared with those fabricated by excimer-laser exposure. The temperature and strain sensitivities of long-period gratings with a period of 212 μm were higher than those of 460 μm. The temperature and strain sensitivities of those by mercury-lamp exposure were almost equal to those by excimer-laser exposure of the same fiber. The sensitivities of those by excimer-laser exposure of non-loaded fiber were higher than those of hydrogen-loaded fiber by mercury-lamp or excimer-laser exposures except for the temperature sensitivity of a grating period of 460 μm.  相似文献   

20.
All-optical clock extraction from a 10-Gbit/s NRZ-DPSK input signal is demonstrated using modal interference in a two-mode fiber (TMF) and a mode-locked fiber ring laser. The TMF has a Mach-Zehnder configuration with two arms along the core and cladding regions. Using the difference in propagation delay between two arms, the non-return-to-zero differential phase shift keying (NRZ-DPSK) signal is converted to the return-to-zero on-off keying (RZ-OOK) signal. To obtain repetitive pulses as a clock signal from the RZ-OOK signal, a ring laser with a semiconductor optical amplifier (SOA) is used. Subsequently, the carrier-to-noise ratio (CNR) of the RZ-OOK and clock signals are enhanced up to 30 dB and 40 dB, respectively, compared to that of the original NRZ-DPSK signal. Also, the clock signal centered at 10 GHz has a low timing jitter of <1.6 ps. It is expected that this method can be applied to high speed fiber-optic systems of >10 Gbit/s due to its small time delay between the core and cladding regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号