首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Manoj Kumar  T.S. Kamal 《Optik》2009,120(7):330-3547
This paper presents the comparative investigation and suitability of various data formats for optical soliton transmission links at 10 Gb/s for different chirps (−0.7 to 0.7). Here the investigations focused on data formats: NRZ, RZ soliton, RZ raised cosine and RZ super Gaussian. The comparative results and suitability of data formats is based on various performance measures such as Q-factor, eye opening, BER and jitter. It has been indicated that RZ super Gaussian yields the highest value of Q (34.08 dB), good eye opening and lowest BER.  相似文献   

2.
Rajneesh Kaler 《Optik》2011,122(7):620-625
In this paper, we have demonstrated the quality-of-service offered by the metropolitan area network which is based on optical cross connect (OXC) and arrayed waveguide grating (AWG) demultiplexer operating at 10 Gb/s with 0.1 nm channel spacing for NRZ signal transmission. The data is successfully transmitted to a distance of 40 km with a reasonably good BER of 2.388 × 10−35. The OXC and AWG demultiplexers in the proposed architecture allow incremental expansion in terms of the number of wavelength channels to be transmitted. Dispersion and crosstalk are the main signal-degrading factors arising from the operation of the OXC and the effectiveness of each factor is individually investigated.  相似文献   

3.
Anu Sheetal  Ajay K. Sharma 《Optik》2010,121(3):246-252
In this paper, 10 and 40 Gb/s optical systems have been investigated for nonreturn-to-zero (NRZ), return-to-zero (RZ), carrier-suppressed return-to-zero (CSRZ) and RZ-differential phase-shift-keying (RZ-DPSK) data formats. For the range of the optical signal power from −5 to 15 dBm, a maximum self-phase modulation (SPM)-limited transmission distance LSPM is determined with eye-opening penalty (EOP) >1 dB .The observations are based on the modeling and numerical simulation of optimum dispersion-managed transmission link. Transmission over distances of the order of several hundreds of kilometers has been shown with and without amplified spontaneous emission (ASE) noise of the in-line erbium-doped fiber amplifiers (EDFAs).  相似文献   

4.
In this paper, we have presented analysis of 10 Gbit/s optical OFDM-RoF transmissions links with distance of 50 km and reported the improved performance by usage of a square root module (SQRT).  相似文献   

5.
Jagjit Singh Malhotra 《Optik》2010,121(9):800-807
This paper presents the performance analysis of non-return-to-zero (NRZ), return-to-zero (RZ), chirped return-to-zero (CRZ) and carrier suppressed return-to-zero (CSRZ) data formats in optical soliton transmission link under the impact of chirp and third-order dispersion (TOD). The performance of these data formats has been analyzed on the basis of certain performance metrics, viz, bit error rate (BER), Q2 (dB), OSNR, eye opening, etc. It has been reported here that the performance of CRZ and CSRZ modulation format is better as compared to NRZ and RZ in a soliton transmission link. Further, CSRZ modulation format has been found to deliver optimum performance on the basis of performance evaluation metrics reported in this paper. In case of NRZ and CSRZ, comparatively narrow power spectrum has been observed. Best eye opening, highest value of Q2 (dB) of 18 dB and lowest value of BER of the order of 10−16 has been reported in case of CSRZ among the considered data formats. The results have been obtained by varying noise figure from 3.0 to 9.0. No considerable effect of noise was observed. It was observed that at very narrow and ultra short pulse width, OSNR value suffers heavily and reduced to even negative values in dB, thus inducing a high degree of OSNR power penalty. The results were obtained by varying chirp factor from −0.6 to +0.6. Negative chirp resulted in improved OSNR as compared to positive chirp. RZ data format yielded a broader optical spectrum, comparatively low spectral efficiency and poor OSNR thus it was found that RZ format is not suitable for optical soliton transmission under the impact of chirp and TOD.  相似文献   

6.
We propose and demonstrate a 10 Gb/s wavelength division multiplexed passive optical network (WDM-PON) where subcarriers are employed to transmit the downstream data and optical carriers of the downlink subcarrier modulated (SCM) lights are reused to injection lock Fabry-Perot laser diodes (FP-LDs) for uplink transmission. Experiment results show that a very good BER performance can be achieved for both uplink and downlink at 10 Gb/s. The impact of optical carrier to subcarrier ratio and wavelength mismatching is also investigated.  相似文献   

7.
Until recently, the wavelength-division-multiplexed (WDM) transmission system has reached record capacities and distances due to innovations such as FEC (Forward Error Correction), distributed Raman amplification, new transmission fiber and advanced optical format. Optical-communication systems exclusively employed conventional On-Off Keying signals in either Non-Return-To-Zero (NRZ) or Return-To-Zero (RZ) format. Recently a number of advanced modulation formats have attracted attention. Some of these formats carry information through On-Off-Keying but also modulate the optical phase in order to enhance the robustness of signal to chromatic dispersion, optical filtering and non-linearities. Through extensive sets of simulation results, we showed that it is possible to replace a channel with higher bit-rate on existing DPSK or OOK at 10Gbit/s transmission link. Duobinary formats are ideal candidates to do it and are known for their low spectral range and high tolerance to residual chromatic dispersion. These particularities make them very attractive for both high bit rates and high distance-transmissions. Today, Phase Shaped Binary Transmission (PSBT) is considered as being the promising format for the deployment of 40Gbit/s technology on existing links at 10Gbit/s WDM long haul transmissions.  相似文献   

8.
We investigated 20 channels at 10 Gb/s wavelength division multiplexing (WDM) transmission over 1190 km single mode fiber and dispersion compensating fiber using cascaded inline semiconductor optical amplifier at a span of 70 km for RZ-DPSK (return zero differential phase-shift keying) modulation format by using same channel spacing, i.e. 100 GHz. We show for RZ-OOK (return zero on-off keying) format a transmission distance of up to 1050 km with Q factor more than 15 dB, without any power drops. We developed the SOA model for inline amplifier having minimum cross-talks and ASE (amplified spontaneous emission) noise power with sufficient gain. At optimal bias current of 400 mA, a high constant gain of 36.5 dB is obtained up to a saturation power of 21.36 mW. So reduction of cross-talk and distortion is possible by decreasing the bias current at appropriate amplification factor.The DPSK modulation format has less cross-talk as compared to OOK format for nonlinearities and saturation case. The impact of optical power received and Q factor at different distance for both RZ-OOK and RZ-DPSK modulation format has been illustrated. We have shown the optical spectrum and clear Eye diagram at the transmission distance of 1190 km in RZ-DPSK system and 1050 km in RZ-OOK systems.The bit error rate (BER) for all channels observed is less than 10−10 up to gain saturation for both DPSK and OOK systems. Finally, we investigated that the transmission distance decreases with a decrease in channel spacing of up to 20 GHz.  相似文献   

9.
We propose a new architecture for 10 Gb/s upstream traffic in TDM-PON using externally injection-locked Fabry-Perot laser diodes (FP-LDs) in each optical network unit (ONU). Four directly modulated 2.5 Gb/s FP-LDs were injection-locked by continuous wave (CW) carriers distributed from the optical line terminal (OLT). Hence, a total of 10 Gb/s upstream traffic can be achieved. Experimental results show negligible power penalty at a transmission of 25 km standard single mode fiber (SMF) without dispersion compensation. The performance of the injection-locked FP-LD is also studied.  相似文献   

10.
The generation of minimum shift keying (MSK) requires a linear variation of the phase, hence a constant frequency of the optical carrier. However, the generation of the optical phase may be preferred by driving an optical modulator using sinusoidal signal for practical implementation. Thus a nonlinear variation of the carrier phase, hence some distortion effects are produced. In this paper, we investigate the use of linear and nonlinear phase shaping filtering and their impacts on MSK modulated optical signals transmission over optically amplified long haul communications system. The evolution of the phasor of the in-phase and quadrature components is illustrated for lightwave-modulated signal transmission. The distinct features of three different MSK modulation formats: linear MSK, weakly nonlinear MSK and strongly nonlinear MSK and their transmission are simulated. Transmission performance obtained indicates the resilience of the MSK signals in transmission over multi-optically amplified multi-spans.  相似文献   

11.
The improvement on the impact of filter concatenation effect on optical signal quality is investigated and discussed for applications in metropolitan optical networks utilizing cost-effective 10-Gb/s transmitters. The sources are low-cost conventional directly modulated lasers (DMLs), fabricated for operation at 2.5 Gb/s but modulated at 10 Gb/s. Performance improvement is achieved by using decision-feedback equalization (DFE) at the receiver end. Experimental studies consider both transient and adiabatic chirp dominated DMLs sources with different chirp characteristics. Measurements have been obtained using a recirculating loop set-up and the performance improvement is evaluated in terms of bit-error-rate (BER) versus number of loops.  相似文献   

12.
Lovkesh  Sandeep Singh Gill 《Optik》2011,122(11):978-985
The paper shows the design of all-optical logic gates OR, AND, NOT, NOR, XNOR, XOR at ultra high speed by using SOA. The simulations of all logic gates are obtained by XGM and FWM in SOA at 40 Gb/s and 60 Gb/s. The OR, AND, NOR logic between two data sources are obtained using a pump signal, while another logic XNOR using two data. The NOT, XOR obtained using FWM and XGM combined. Thus realization of these logics at 40 Gb/s and 60 Gb/s will lead revolution growth in optical signal processing for high-speed operation.  相似文献   

13.
We present experimental and theoretical results on all-optical 10 and 20 Gb/s RZ to NRZ modulation format and wavelength converter based on a nonlinear optical loop mirror (NOLM). A vector model of converter was developed and the shape of converted pulses was found analytically for particular choice of polarization states. In the experiment, non-zero dispersion shifted fiber with a length 1200 m was used as a nonlinear medium. Pulses from a 10 GHz mode-locked semiconductor laser diode were modulated to form pseudorandom RZ signal and eventually time division multiplexed to 20 Gb/s. RZ pulses were subsequently converted to NRZ signal. The performance of the converter was evaluated experimentally using the data communication analyzer and bit error ratio tester.  相似文献   

14.
In this investigation, we experimentally investigate an extended reach (ER) time-division-multiplexed passive optical network (TDM-PON) using four wavelength-multiplexed channels to achieve 16 Gb/s downlink and 10 Gb/s uplink traffic. Each downlink signal uses the highly spectral efficient 4 Gb/s OFDM-QAM, and each uplink signal is generated by signal remodulating the downlink signal via a reflective semiconductor amplifier (RSOA) at 2.5 Gb/s non-return-to-zero (NRZ). In addition, the performance of the proposed ER TDM-PON has also been analyzed and discussed.  相似文献   

15.
In this paper, we have analyzed the signal processing methods both in digital and optical domain to enhance the transmission performance of downstream signalling in long reach passive optical networks (LR-PONs). The impact of non-linear (NL) equalization through signal processing, i.e. Volterra Equalization (VE), Digital Backpropagation (BP) and Optical Phase Conjugation with Non-linearity Module (OPC-NM) is investigated, in 10 Gbit/s (XG) DP-QPSK long-reach wavelength division multiplexed (WDM) PONs without midspan repeaters over 120 km standard single mode fibre (SMF) link for down-stream signals. Due to the compensation of optical Kerr effects, the sensitivity penalty is reduced to 2 dB by BP algorithm, 1.5 dB by VE algorithm and 2.69 dB by OPC-NM. Moreover, with the implementation of NL equalization technique we are able to get the transmission distance of 126.6 km SMF for the 1:1024 split-ratio at 5 GHz channel spacing in the non-linear region. Furthermore, the concept of super passive optical network (S-PON) is also evaluated, which involves a repeater stage consisting of optical amplifiers, to study the feasibility for receiver side signal processing and simplification.  相似文献   

16.
In this paper, we optimize the inter-amplifier spacing in combination with duty cycle of RZ data format and EDFAs power so that link length of system can be maximized. The results for EDFA amplifier placement in 10 Gbps single channel dispersion managed optical communication system have been presented. By increasing the length of standard single mode fiber of dispersion 16 ps/nm/km in proportion to the increase in length of compensating fiber of dispersion −80 ps/nm/km, the pre-, post- and symmetrical-dispersion compensation schemes of the system have been compared. Further, schemes are observed at 8, 10 and 12 dBm values of EDFA power in the link with different duty cycle values of RZ optical pulse in the range of 0.2-0.8 with step size of 0.2 in relation to amplifier spacing to get lower value of bit error rate and timing jitter. The graphical results obtained show strong relationship among duty cycle of RZ optical pulse, EDFA power and, dispersion compensation scheme.  相似文献   

17.
In this paper, a fiber optic communication system has been employed using co-existing 10 G/2.5 G asymmetric gigabit passive optical network (XG-PON) architecture. In this system, bidirectional optical fiber has been used for upstream and downstream data transmission. The system performance has been investigated for non-return-to-zero (NRZ) and return-to-zero (RZ) data formats operating at varying bit rates by varying the length of the fiber for analyzing the feasibility of this co-existence. The results have been compared for NRZ and RZ formats for upstream and downstream data in terms of Q value and eye opening. It is observed that RZ modulation format is superior as compared to conventional NRZ format and the faithful transmission of signal has been carried up to 90 km at 1577 nm for downstream and 140 km at 1270 nm for upstream.  相似文献   

18.
The optimum operating powers and wavelengths for a 40 Gb/s wavelength converter based on four-wave mixing in a semiconductor optical amplifier are inferred from experimental results. From these measurements, some general rules of thumb are derived for this kind of devices. Generally, the optimum signal power should be 10 dB lower than the pump power (−16 dB conversion efficiency) whereas the wavelength separation between the signal and the pump carrier should not be lower than about four times the signal bitrate (1.3 nm for 40 Gb/s RZ signals).  相似文献   

19.
An extended reach 10 Gb/s wavelength division multiplexing passive optical networks (WDM-PONs) system based on reflective semiconductor optical amplifier (RSOA) is proposed by using power pre-emphasized orthogonal frequency division multiplexing (OFDM) signal. Experimental results show that the proposed technique can effectively enhance the system performance against the limited bandwidth and chirp induced fading effect from direct modulation of RSOA. The receiver sensitivity is improved by 5 dB at the limit of BER for forward error correction (FEC) code over the 60 km and 85 km fiber transmission without any dispersion compensation module.  相似文献   

20.
This paper aims to evaluate a comprehensive numerical model based on solving rate equations of a thulium-doped silica-based fiber amplifier. The pump power and thulium-doped fiber (TDF) length for single-pass thulium-doped fiber amplifiers (TDFA) are theoretically optimized to achieve the optimum gain and noise figure (NF) at the center of S-band region. The 1064 nm pump is used to provide both ground-state and excited state absorptions for amplification in the S-band region. The theoretical result is in agreement with the published experimental result.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号