首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
In certain species of moths and butterflies iridescent colors arise from subwavelength diffractive surface corrugation of the wing-scales. The optical properties of such structures depend strongly on wavelength, incidence angle, and state of polarization of illuminating radiation, and the viewing angle. In this paper, we study the reflection spectra of the wings of the Morpho didius butterfly by simulating a double-layered model of a transverse cross-section comprised of the ground scale and the cover scale. Each layer contains a certain quasi-periodic arrangement of tree-like subwavelength microstructures. The simulation is done using a high accuracy nonstandard finite-difference time-domain (FDTD) method in two dimensions. We assume that the structure is made of a slightly lossy dielectric material. The wavelength dependence of the complex refractive index for the ground scale of Morpho didius is assumed to be similar to that of Morpho sulkowskyi. The complex refractive index in the latter case was obtained by comparing the computed reflection/transmission spectra with corresponding experimental measurements at normal incidence.  相似文献   

2.
In certain species of moths and butterflies iridescent colours arise from subwavelength diffractive structures. The optical properties of such a structure depend strongly on wavelength, incidence angle and state of polarization of illuminating radiation and on the viewing angle. Such structures can be analyzed only by solving Maxwell's equations, but since analytical solutions exist for only a few simple, highly symmetric structures numerical methods must be employed. We investigated the optical properties of butterfly wings in two dimensions by simulating a scale structure using a high accuracy version of nonstandard finite-difference time-domain algorithm. The simulated structure is a computer-generated model of a certain quasi-periodic arrangement of tree-like structures observed in the transmission electron micrograph (TEM) image of a transverse cross-section of a single scale from Morpho butterfly wings. We assumed that the structure is made of a slightly lossy dielectric material. We checked the accuracy and validity of our approach, by computing scattered field intensities due to an infinite cylinder and compared the results with analytical calculations using Mie theory. Next we deduced the wavelength dependence of a real refractive index and an absorption coefficient for the ground scales on the wings of Morpho sulkowskyi butterfly by computing the reflectivity and transmissivity spectrum of a scale at normal incidence, and comparing with experimental measurements. Finally, we calculated the tristimulus values and corresponding colour coordinates for various viewing directions from the scale's far-field reflectivity and transmissivity spectra to characterize its colour rendering abilities.  相似文献   

3.
The iridescence of Morpho rhetenor butterfly is known to result from a photonic structure on wing scales, where multilayer interference and grating diffraction occur simultaneously. We characterize the disorder at the photonic structure length scale and at the butterfly scale. We measure the scattering pattern of the wing. Through RCWA and 1st Born approximation models, we link the different disorders to different features in the scattering patterns.  相似文献   

4.
Inspired by the high light-harvesting properties of typical butterfly wings, ceramic WO3 butterfly wings with hierarchical structures of bio-butterfly wings was fabricated using a template of PapilioParis butterfly wings through a sol–gel method. The effect of calcination temperatures on the structures of the ceramic butterfly wings was investigated and the results showed that the WO3 butterfly wing replica calcined at 550 °C (WO3 replica-550) is a single phase and has a high crystallinity and relatively fine hierarchical structure. The average grain size of WO3 replica-550 and WO3 powder are around 32.6 and 42.2 nm, respectively. Compared with pure WO3 powder, WO3 replica-550 demonstrated a higher light-harvesting capability in the region from 460 to 700 nm and more importantly the higher charge separation rate, as evidenced by electron paramagnetic resonance measurements. Photocatalytic O2 evolutions from water were investigated on the ceramic butterfly wings and pure WO3 powder under visible light (λ > 420 nm). The results showed that the amount of O2 produced from WO3 replica-550 is 50 % higher than that of the pure WO3 powder. The improved photocatalytic performance of WO3 replica-550 is attributed to the quasi-honeycomb structure inherited from the PapilioParis butterfly wings, providing both high light-harvesting efficiency and efficient charge transport through the WO3.  相似文献   

5.
Many butterfly wing scales (BWSs) possess novel periodic fine structures and can influence and manipulate the propagation of light in a certain wavelength range though an interaction similar to that occurring in photonic crystals. Such optical properties and their physical origin can be theoretically analysed by solving Maxwell’s equations. Many previous works have successfully applied a model of strict periodic pine-tree structure to the analysis of the scattering property of BWSs. However, fluctuation of the periodicity is common in the structure of BWSs. Thus clarification of the influence of size or periodicity variations on the optical properties of BWSs is then needed. In the present article, size variations have been considered and their influence on the scattering properties of BWSs is simulated in detail using a Finite-Difference-Time-Domain method (FDTD). The calculated reflectance spectrum will be more representative to the experimental result in the case where disorders, caused by size or periodicity variations, are considered. A detailed analysis shows that the main reflectance peak will be broadened and red-shifted especially when the angle of incidence is confined to a narrow range within 0° ± 10° (?10° ≤ θ ≤ 10°). The results will be stable if the maximal deviation – the pine-tree unit away from its original equilibrium position – is smaller than 50 nm. Finally, we test the visible spectrum of the butterfly Morpho Didius and compare the results to those of our simulation. It is shown that the present results are in good agreement with experimentally observed trends, and this work will be helpful for a better understanding of the colorisation mechanism of materials with the structure of BWSs.  相似文献   

6.
《Current Applied Physics》2010,10(2):625-630
This study employed a soft lithography technique to fabricate a polydimethylsiloxane (PDMS) replica of the multi-layered scales on the upper surface of a Morpho butterfly. The bionic photonic crystal microstructure of the replicated scales was examined using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The absorptivity, reflectivity and fluorescent characteristics of the wing were measured. The results showed that the microstructural and optical characteristics of the replicated wing qualitatively agree with those of the actual wing. The contact angle for the natural wing structure and the replicated wing were about 143° and 120°, respectively. As a result, it can be inferred that the soft lithography technique employed in this study represents a viable approach for the mass production of artificial photonic crystal structures for a variety of commercial applications, including optical elements for computing and communications purposes, photonic integrated circuits, anti-counterfeiting mechanisms, and so forth.  相似文献   

7.
It is shown that atomic-force microscopy under normal conditions makes it possible to obtain important information on the topography and features of nanostructures formed on the surface of cover glasses of solar cells exposed on the Mir orbital station for more than ten years. It is found that the nanostructures are multiscale; they are present on all vertical visualization scales from ∼1000 to ∼17 nm and on horizontal scales from ∼1000 to ∼100 nm. The nanoindentation study of mechanical properties of the exposed surface layer shows that the exposed surface at nanodepths is characterized by higher plastic deformation, but lower hardness and effective modulus, in comparison with unexposed surface.  相似文献   

8.
The formation of ordered Sr overlayers on Si(1 0 0) by Atomic Layer Deposition (ALD) from bis(triisopropylcyclopentadienyl) Strontium (Sr(C5iPr3H2)2) and H2O has been investigated. SrO overlayers were deposited on a 1-2 nm SiO2/Si(1 0 0) substrate, followed by a deoxidation process to remove the SiO2 layer at high temperatures. Auger electron spectroscopy, Rutherford backscattering spectrometry, spectroscopic ellipsometry, and low-energy electron diffraction were used to investigate the progress of both ALD and deoxidation processes. Results show that an ordered Sr/Si(1 0 0) surface with 2 × 1 pattern can be obtained after depositing several monolayers of SrO on Si using ALD followed by an anneal at 800-850 °C. The (2 × 1) ordered Sr/Si(1 0 0) surface is known to be an excellent template for the epitaxial growth of SrTiO3 (STO) oxide. The present results demonstrate that ALD is a potential alternative to molecular beam epitaxy methods for the fabrication of epitaxial oxides on semiconductor substrates.  相似文献   

9.
The antiferromagnetic ordering in YbAlO3 at low temperatures has been studied. Susceptibility measurements are in agreement with certain features of a quasi one-dimensional Ising system. Neutron diffraction below 0.8 K suggests a structure of the type AxGy. The spontaneous magnetic moment at 100 mK compares well with the value from the ground state doublet and is in disagreement with Mössbauer results.  相似文献   

10.
We report simple room temperature synthesis of Mg doped ZnO nanostructures through the sol–gel method. X-ray diffraction shows the prepared ZnO particles are in wurtzite structure and replacement of Zn2+ by Mg2+ alters the position of the X-ray diffraction peak slightly towards higher angle. Measured optical absorption spectra show the exciton peaks of ZnO present around 366, 296 and 235 nm. Room temperature photoluminescence measurements show strong peaks around 385, 394 nm are attributed to band edge exciton emission; other peaks found at 469 and 558 are attributed to oxygen ion vacancy and formation of Vo+ and Vo++ centers in nanostructures.  相似文献   

11.
The undoped and Al-doped ZnO nanostructures were fabricated on the ITO substrates pre-coated with ZnO seed layers using the hydrothermal method. The undoped well-aligned ZnO nanorods were synthesized. When introducing the Al dopant, ZnO shows various morphologies. The morphology of ZnO changes from aligned nanorods, tilted nanorods, nanotubes/nanorods to the nanosheets when the Al doping concentrations increase. The ZnO nanostructures were characterized by X-ray diffraction, field emission scanning electron microscopy, X-ray photoelectron spectroscopy, photoluminescence and Raman technology. The Al doping concentrations play an important role on the morphology and optical properties of ZnO nanostructures. The possible growth mechanism of the ZnO nanostructures was discussed.  相似文献   

12.
We have demonstrated the crystalline ZnO-Al2O3 core-shell nanowire structure by atomic layer deposition (ALD) at a temperature 100 °C. The core-shell structure could have potential applications in the fabrication of ZnO field effect transistor. After dissolving the ZnO core, shape defined, rigid and robust crystalline Al2O3 shelled nanostructures have been fabricated. Nanowire ZnO nanostructures have been replicated by alumina shell. This is one of the most effective techniques for producing core-shell or shell/hollowed nanostructures of any desired objects. The Al2O3 shelled nanostructures could have potential applications as space confined nanoreactors, drug delivery, nanofluidic channels and optical transmitting.  相似文献   

13.
Nanoscale cadmium stannate (CdSnO3) structures were productively synthesized via a facile and rapid sonochemical route using an eco-friendly capping agent of glucose. In order to optimize the size and structure of products, the various effective factors were inquired such as ultrasound waves, calcination temperature and solvent. The all samples were synthesized under ultrasonic probe for 30 min and different power (frequency) of 80 (24 KHz), 60 (18 KHz) and 40 W (12 KHz). The properties and characteristics of as-fabricated samples were examined by proficient techniques to identification the purity, structure, shape, optical, electrical and surface features. The ability of CdSnO3 nanostructures and representative graphene based nanocomposites as potential hydrogen storage materials was considered by electrochemical methods. According to the obtained results, the CdSnO3/graphene nanocomposites demonstrated higher hydrogen storage capacity than pristine CdSnO3 nanostructures.  相似文献   

14.
ZnxCd1-xS nanostructures with (x = 0, 0.25, 0.5, 0.75, 1) have been grown on glass substrates using spray pyrolysis technique. X-ray diffraction results have showed that ZnxCd1-xS nanostructures were formed with hexagonal and cubic structures. The structural parameters have been evaluated as a function of concentration (x). Also, the optical properties that depend on the mole fraction (x) are investigated for ZnxCd1-xS nanostructures.  相似文献   

15.
In this paper the fabrication and characterization of IV-VI semiconductor Pb1−xSnxSe (x = 0.2) thin films on gold substrate by electrochemical atomic layer deposition (EC-ALD) method at room temperature are reported. Cyclic voltammetry (CV) is used to determine approximate deposition potentials for each element. The amperometric I-t technique is used to fabricate the semiconductor alloy. The elements are deposited in the following sequence: (Se/Pb/Se/Pb/Se/Pb/Se/Pb/Se/Sn …), each period is formed using four ALD cycles of PbSe followed by one cycle of SnSe. Then the deposition manner above is cyclic repeated till a satisfactory film with expected thickness of Pb1−xSnxSe is obtained. The morphology of the deposit is observed by field emission scanning electron microscopy (FE-SEM). X-ray diffraction (XRD) pattern is used to study its crystalline structure; X-ray photoelectron spectroscopy (XPS) of the deposit indicates an approximate ratio 1.0:0.8:0.2 of Se, Pb and Sn, as the expected stoichiometry for the deposit. Open-circuit potential (OCP) studies indicate a good p-type property, and the good optical activity makes it suitable for fabricating a photoelectric switch.  相似文献   

16.
The present study focuses on the effect of film thickness on the physical properties of tin mono-sulfide (SnS) nanostructures deposited through an electrodeposition technique. The SnS films were characterized using X-ray diffraction (XRD) analysis, which confirmed the formation of polycrystalline orthorhombic SnS thin films. The crystallite size and lattice parameters were estimated from the XRD patterns. The effect of the deposition voltage on the surface morphology of the deposited films was evaluated by field emission electron microscopy (FESEM). The FESEM images revealed that the nanostructures possess plate-like and bulky pyramid morphologies. Also, optical plots of the thin films were considered, which determined the direct band gap energies of the samples as 1.42–1.50 eV. Finally, Mott–Schottky measurements indicated that the samples have p-type conductivity and the carrier concentrations of the SnS films improve with the increase of their thicknesses.  相似文献   

17.
W-doped ZnO nanostructures were synthesized at substrate temperature of 600 °C by pulsed laser deposition (PLD), from different wt% of WO3 and ZnO mixed together. The resulting nanostructures have been characterized by X-ray diffraction, scanning electron microscopy, atomic force microscopy and photoluminescence for structural, surface morphology and optical properties as function of W-doping. XRD results show that the films have preferred orientation along a c-axis (0 0 L) plane. We have observed nanorods on all samples, except that W-doped samples show perfectly aligned nanorods. The nanorods exhibit near-band-edge (NBE) ultraviolet (UV) and violet emissions with strong deep-level blue emissions and green emissions at room temperature.  相似文献   

18.
In this report, Raman and Fourier Transform Infrared (FTIR) measurements were carried out to study the phonon modes of pure and Fe doped ZnO nanoparticles. The nanoparticles were prepared by sol–gel technique at room temperature. The X-ray diffraction measurements reveal that the nanoparticles are in hexagonal wurtzite structure and doping makes the shrinkage of the lattice parameters, whereas there is no alteration in the unit cell. Raman measurements show both E2lowE_{2}^{\mathrm{low}} and E2HighE_{2}^{\mathrm{High}} optical phonon mode is shifted towards lower wave number with Fe incorporation and explained on the basis of force constant variation, stress measurements, respectively. In addition, Fe related local vibrational modes (LVM) were observed for higher concentration of Fe doping. FTIR spectra reveal a band at 444 cm−1 which is specific to E 1 (TO) mode; a red-shift of this mode in Fe doped samples and some surface phonon modes were observed. Furthermore, the observation of additional IR modes, which is considered to have an origin related to Fe dopant in the ZnO nanostructures, is also reported. These additional mode features can be regarded as an indicator for the incorporation of Fe ions into the lattice position of the ZnO nanostructures.  相似文献   

19.
Angle resolved XPS (ARXPS) is a powerful tool for the determination of the thickness of ultra-thin films. In the case of high-k dielectric layers, the technique is capable of measuring the thickness of both the high-k layer and intermediate layers of silicon dioxide or metal silicate. The values for layer thickness are in close agreement with those generated by a variety of other techniques. As well as knowing the thickness of these layers, it is important to determine whether the layers are continuous or whether the coverage of the high-k layer is only partial. Using ARXPS, a method has been developed to determine whether the coverage of the high-k material is continuous and, if not, to calculate the fraction of the surface that is covered. The method is described with reference to the layers of Al2O3 grown on SiO2 using atomic layer deposition (ALD). The method is then applied to HfO2 layers produced using ALD on silicon wafers whose surfaces had received three different types of surface treatment. The way in which the layers grow and the nature of the resulting layer were found to depend upon the pre-treatment method. For example, growth on a thermal silicon dioxide surface resulted in complete coverage of HfO2 after fewer ALD cycles than layers grown on an H-terminated surface. The results from ARXPS are compared with those obtained from ToF SIMS that have been shown earlier to be a valuable alternative to the LEIS analysis [1].  相似文献   

20.
β-Ga2O3 nanostructures including nanowires, nanoribbons and nanosheets were synthesized via thermal annealing of gold coated GaAs substrates in N2 ambient. GaAs substrates with different dopants were taken as the starting material to study the effect of doping on the growth and photoluminescence properties of β-Ga2O3 nanostructures. The nanostructures were investigated by Grazing Incident X-ray Diffraction, Scanning Electron Microscopy, Transmission Electron Microscopy, Energy Dispersive X-ray Spectroscopy, room temperature photoluminescence and optical absorbance. The selected area electron diffraction and High resolution-TEM observations suggest that both nanowires and nanobelts are single crystalline. Different growth directions were observed for nanowires and nanoribbons, indicating the different growth patterns of these nanostructures. The PL spectra of β-Ga2O3 nanostructures exhibit a strong UV-blue emission band centered at 410 nm, 415 nm and 450 nm for differently doped GaAs substrates respectively. A weak red luminescence peak at 710 nm was also observed in all the samples. The optical absorbance spectrum showed intense absorption features in the UV spectral region. The growth and luminescence mechanism in β-Ga2O3 nanostructures are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号