首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The characteristics of optical-wave target detection and imaging from a negative-refraction photonic crystal (NR-PC) flat lens are studied with a two-dimensional (2D) finite-difference time-domain (FDTD) method in the paper. The results show that there exists a transmission peak, with a value far greater than unit, resulting from the influence of the mini-forbidden bands and resonance excitation effect at resonance frequency. Also, the refocusing of backscattered optical wave from the target leads to its image with a sub-wavelength lateral resolution and great amplitude as long as the target is placed at the focus of the NR-PC flat lens. Therefore, the NR-PC flat lens will find many implications in optical area, especially in the detection and imaging of small targets.  相似文献   

2.
In the paper, target detection and imaging from refraction photonic crystal (NR-PC) slab lens is studied by the finite-difference time-domain (FDTD) method. Numerical simulation shows that, there is a transmission peak with a value far greater than unit, resulting from the mini-forbidden bands and resonance excitation at the resonance frequency of 0.3068 (a/λ). When a target is placed at the focus point (F2) of the NR-PC lens, its image and great amplitude could be formed in the vicinity of the point source through the focusing of backscattered optical wave from the target. Further investigation demonstrates that the lens-combined scanning scheme provides higher refocusing resolution than lens-fixed and non-dynamic scanning scheme for square target detection and imaging.  相似文献   

3.
The characteristics of two-target detection and imaging from negative-refraction photonic crystal (NR-PC) flat lens are studied by using the two-dimensional finite-difference time-domain method. It is demonstrated that due to the influence of the mini-forbidden band and resonance excitation effect, high transmissivity will appear at the normalized resonance frequency of 0.3068 when the lightwave goes through the NR-PC lens. Meanwhile, the use of the NR-PC lens may introduce at least fourfold improvement of the refocusing resolution, if compared to the directly backscattered lightwave without using the NR-PC lens. In addition, by giving a defination for two-target minimum distinguishable distance, we further investigate the performance of two-target detection and imaging system using the proposed focus-scanning scheme. The results show that the smaller the size of the target pair is, the weeker the interference between the two targets will be, which results in a better performance in the minimum distinguishable distance.  相似文献   

4.
Influence of the defective cylinder air holes of negative-refraction photonic crystal (NR-PC) lens on the performance of lightwave target detection and imaging are studied with finite-difference time-domain method in the paper. Numerical simulations indicate that significant enhancement of the scattering signal can be obtained using the NR-PC flat lens; consequently, great improvement of the refocusing gain as well as the imaging resolution will be provided. We further study the effect on target detection and imaging using the defective NR-PC flat lens. Using dynamic scanning scheme, it is found that its focusing resolution is better than the non-defective lens. We can also get better resolution by appropriately decreasing the radius of the defective cylinder (R = 0.3a). In conclusion, appropriate radius of the defective cylinder (R = 0.3a) will provide better image resolution.  相似文献   

5.
In the paper, the influence of the cylinder air holes of negative-refraction photonic crystal (NR-PC) double flats lens group with active impurities on the performance of lightwave target detection and imaging are studied with finite-difference time-domain (FDTD) method. Firstly, we conclude the focusing imaging circuit diagram of NR-PC flat lens with the Snell extension law and geometrical optics principle. Then we use NR-PC flat lens to detect target with dynamic scanning system according to that. Numerical simulations indicate that significant enhancement of the scattering signal can be obtained due to the use of the NR-PC flat lens. We further research the influence of active impurities on target detecting by using NR-PC double flats lens group with cylinder air holes. We use NR-PC flat with active impurities instead of the perfect ones. By using dynamic scanning scheme, we find that it could improve the lateral resolution of target scanning through introducing appropriate active impurities. In conclusion, our investigation optimized the performance of the small target detection and imaging system, and provided the basis for converting an idealized LHM lens into a physically realizable NR-PC double flats lens group.  相似文献   

6.
Based on the defective NR-PC flat lens incorporating Al or Cu, the effects on the resolution for target detection and imaging are studied with dynamic scanning scheme. We use the finite-difference-time-domain method to do this research. Firstly, by using the NR-PC flat lens may improve the refocusing resolution by four times, if compared to the directly backscattered lightwave without using the NR-PC lens. Then, incorporating Al or Cu into the NR-PC flat lens, we find that the dope modes with very high quality factors will occur in the photonic forbidden band. Also the stimulated radiation is enhanced for the character of energy localization of defective photonic crystal. Further studies show that different kinds of metal and structures will result in different dopped modes in the photonic forbidden band, which will lead to the change of the corresponding resolution. Due to the displacement field redistribution, the photonic crystal containing metal ingredients may take on the typical qualities of all-directional reflection, and the resonant tunneling effect may effectively reduce the loss, which provides greatly improvement on the refocusing resolution when using the defective NR-PC flat lens. In conclusion, our investigation provided the basis for converting an idealized LHM lens into a physically realizable NR-PC flat lens. Meanwhile, by impregnating metallic defect into the NR-PC lens, a new method is found out for the improvement of the refocusing resolution, which further optimizes the performance of a detecting and imaging system.  相似文献   

7.
Huang S  Wang H  Ding KH  Tsang L 《Optics letters》2012,37(8):1295-1297
In this Letter we investigate the subwavelength imaging of a three-dimensional plasmon superlens based on the full vector wave simulations of optical wave propagation and transmission. The optical transfer functions are computed. Comparisons are made between the results of lenses with flat and periodic/random rough surfaces. We also study the problem of practical imaging system geometry using laser as an illumination source. Results show that the lens with periodic or random roughness can reduce the field interference effects, and provide improved focus on the transmission field and the Poynting flux. We illustrate that the subwavelength roughness in a plasmon lens can enhance the image resolution over a flat lens for both matched and unmatched permittivity conditions. The enhancement of resolution occurs because the introduced subwavelength roughness can amplify the evanescent wave components and suppress the surface plasmon resonance peaks.  相似文献   

8.
Refraction index mismatch between flat left-handed metamaterial (LHM) lens and its surrounding medium generally destroys the focusing of flat LHM lens and degrades the performance of near-field target detection by using flat LHM lens. For LHM lens of refraction index mismatch within ±30%, numerical simulations demonstrate that lenses with large refraction index may suffer less resolution degradation than lenses with small refraction index, and the enhancement of refocused microwave backscattered from target can be subsided by up to approximately 5.5dB. The refraction index mismatch will also shift the target position in the reconstructed image so that theoretical prediction of target position needs to be modified.  相似文献   

9.
For applications such as near-field target detection and tumor hyperthermia with a fiat left-handed metamaterial (LHM) lens, a microwave will be focused in the heterogeneous and lossy medium. Different from the focusing of a fiat LHM lens in vacuum as reported in most previous studies, the medium loss and heterogeneity will affect the focusing performance of the LHM lens. Numerical simulations indicate that the medium loss will degrade the focusing resolution, while the heterogeneity of random variability within ±30% will affect the focusing resolution to a limited extent. Both the loss and heterogeneity of the medium will shift the focal point away from the image plane. When focusing in a medium with different permittivity values, an LHM lens will also have different focusing resolutions due to different electric thicknesses.  相似文献   

10.
紫外像增强器作为导弹紫外告警系统、紫外预警系统以及各类紫外辐射监测系统的核心部件,其参数准确与否,直接影响到系统的图像质量。为保证测试数据的准确性,研制紫外像增强器分辨力校准装置,校准装置所用紫外光源是波长范围为200 nm~400 nm的紫外光,相对应的分辨力靶、滤光处、光学成像系统均要求能够透射紫外光,由于紫外波长较短,容易引起散射效应而产生大量的杂散光,设计的分辨力靶采用紫外级石英,紫外光学成像系统采用透射式结构,选用同轴共轭透镜作为紫外光学成像系统。实验和测量不确定度分析验证校准装置的测量不确定度为5%。  相似文献   

11.
刘飞  魏雅喆  韩平丽  刘佳维  邵晓鹏 《物理学报》2019,68(8):84201-084201
针对实时广域高分辨率成像需求,充分利用具有对称结构的多层共心球透镜视场大且各轴外视场成像效果一致性好的特点,设计基于共心球透镜的多尺度广域高分辨率计算成像系统.该系统基于计算成像原理,通过构建像差优化函数获得光学系统设计参数,结合球形分布的次级相机阵列进行全局性优化,提高系统性能的同时有效简化光学设计过程、降低系统设计难度.系统稳定性测试结果表明,该成像系统的MTF(modulation transmission function)值在截止频率处接近衍射极限,弥散斑均方根恒小于探测器像元尺寸,整机实景实时成像效果良好,无视觉可见畸变.该系统不仅有效解决了传统成像中广域和高分辨率成像矛盾的问题,而且为计算光学成像系统设计奠定了一定研究基础.  相似文献   

12.
利用维纳滤波改善声透镜光声成像系统的分辨率   总被引:1,自引:1,他引:0  
为了克服衍射效应对光声成像系统分辨率的限制,需要采用逆卷积方法进行图像反演.从理论上分析了声透镜成像原理,模拟仿真了声透镜的点扩展函数对声透镜成像系统分辨率的影响和维纳滤波解卷积方法复原光声成像的过程,并利用自搭建的声透镜光声成像系统进行了深入的实验研究,得到了物平面上相距4 mm和3 mm的两个黑胶带点的直接成像光声...  相似文献   

13.
设计了离轴全球面成像光谱仪和离轴校正透镜棱镜分光成像光谱仪两种光学系统.在离轴全球面成像光谱仪的基础上,提出了改进型离轴校正透镜光谱仪,仅采用一个色散棱镜,避免了大口径同心透镜;有效校正了大视场像差,色散非线性修正效果显著.通过调节离轴角和光谱仪的焦距控制了畸变,补偿了与波长相关的狭缝弯曲,减小了残余像差,并降低了整个光谱仪工程实施的难度.从工程合理性、加工可实现性和光学性能等方面比较了两个系统的特点,推导和给出了光谱分辨率和狭缝弯曲的计算结果.从设计结果看,改进型离轴校正透镜光谱仪的传递函数最小值大于75%,而离轴全球面成像光谱仪的最小值只大于60%.从加工难易程度看,离轴全球面成像光谱仪采用一个接近Φ200 mm的石英透镜,其透射材料远不如改进型离轴校正透镜光谱仪透镜材料的均匀性和面形准确度高,而且大口径透镜大大增加了制备难度和成本.从工程布局看,改进型离轴校正透镜光谱仪充分考虑了与机械结构的匹配,狭缝与第一面反射镜的轴向距离较合理.从光谱特性看,两个光学系统的光谱分辨率结果基本接近,离轴全球面成像光谱仪光谱弯曲结果略好于离轴校正透镜结构.因此,综合比较得出离轴校正透镜光谱仪是最佳的选择方案,该系统可应用在短波红外波段的光谱成像的遥感探测.  相似文献   

14.
The optical design of a two‐dimensional imaging soft X‐ray spectrometer is described. A monochromator will produce a dispersed spectrum in a narrow vertical illuminated stripe (~2 µm wide by ~2 mm tall) on a sample. The spectrometer will use inelastically scattered X‐rays to image the extended field on the sample in the incident photon energy direction (vertical), resolving the incident photon energy. At the same time it will image and disperse the scattered photons in the orthogonal (horizontal) direction, resolving the scattered photon energy. The principal challenge is to design a system that images from the flat‐field illumination of the sample to the flat field of the detector and to achieve sufficiently high spectral resolution. This spectrometer provides a completely parallel resonant inelastic X‐ray scattering measurement at high spectral resolution (~30000) over the energy bandwidth (~5 eV) of a soft X‐ray absorption resonance.  相似文献   

15.
In vivo dark-field reflection-mode photoacoustic microscopy   总被引:1,自引:0,他引:1  
Maslov K  Stoica G  Wang LV 《Optics letters》2005,30(6):625-627
Reflection-mode photoacoustic microscopy with dark-field laser pulse illumination and high-numerical-aperture ultrasonic detection is designed and implemented in noninvasively imaged blood vessels in the skin in vivo. Dark-field optical illumination minimizes the interference caused by strong photoacoustic signals from superficial structures. A high-numerical-aperture acoustic lens provides high lateral resolution, 45-120 microm in this system. A broadband ultrasonic detection system provides high axial resolution, estimated to be approximately 15 microm. The optical illumination and ultrasonic detection are in a coaxial confocal configuration for optimal image quality. The system is capable of imaging optical-absorption contrast as deep as 3 mm in biological tissue.  相似文献   

16.
We experimentally demonstrate subwavelength resolution imaging at microwave frequencies by a three-dimensional (3D) photonic-crystal flat lens using full 3D negative refraction. The photonic crystal was fabricated in a layer-by-layer process. A subwavelength pinhole source and a dipole detector were employed for the measurement. By point-by-point scanning, we obtained the image of the pinhole source shown in both amplitude and phase, which demonstrated the imaging mechanism and subwavelength feature size in all three dimensions. An image of two pinhole sources with subwavelength spacing showed two resolved spots, which further verified subwavelength resolution.  相似文献   

17.
It has been a challenge to overcome the corneal curvature radius to design a full-pupil field, non-contact and high resolution corneal curved objective lens, which covers the cornea full-pupil field and has the ability to resolve corneal cells. In this paper, we report an optical design of a full-pupil field, non-contact corneal curved objective lens for high resolution cornea imaging. The advantages of this lens are that it has a wide field of view (FOV) with the corneal curved image surface, maintains the beam normal incidence, as well as non-contact lens imaging, and offers a cell-level lateral resolution of cornea structure. The analysis of optimization shows that the system achieves diffraction limit in a circular FOV of 4 mm diameter covering the full-pupil zone. The theoretical lateral resolution is about 2.5 μm with an image space NA of 0.16, which is sufficient to resolve corneal cells of 7 μm diameter, and the working distance is larger than 15 mm which is enough for a non-contact objective lens. So the optical design is effectively and efficiently meeting the demand of specifications.  相似文献   

18.
《Physics letters. A》2005,334(4):326-330
We study numerically, by means of the pseudospectral time-domain method, the unique features of imaging by a flat lens made of a left-handed metamaterial that possesses the property of negative refraction. We confirm the earlier finding that a left-handed flat lens can provide near-perfect imaging of a point source and a pair of point sources with clear evidence of sub-wavelength resolution. We illustrate the limitation of the resolution in the time-integrated image due to the presence of surface waves.  相似文献   

19.
X射线光场成像技术研究   总被引:1,自引:0,他引:1       下载免费PDF全文
戚俊成  刘宾  陈荣昌  夏正德  肖体乔 《物理学报》2019,68(2):24202-024202
X射线三维成像技术是目前国内外X射线成像研究领域的一个研究热点.但针对一些特殊成像目标,传统X射线计算层析(CT)成像模式易出现投影信息缺失等问题,影响CT重建的图像质量,使得CT成像的应用受到一定的限制.本文主要研究了基于光场成像理论的X射线三维立体成像技术.首先从同步辐射光源模型出发,对X射线光场成像进行建模;然后,基于光场成像数字重聚焦理论,对成像目标场在深度方向上进行切片重建.结果表明:该方法可以实现对成像目标任一视角下任一深度的内部切片重建,但是由于光学聚焦过程中的离焦现象,会引入较为严重的背景噪声.当对其原始数据进行滤波后,再进行X射线光场重聚焦,可以有效消除重建伪影,提高图像的重建质量.本研究既有算法理论意义,又可应用于工业、医疗等较复杂目标的快速检测,具有较大的应用价值.  相似文献   

20.
高分辨率快速数字化光声CT乳腺肿瘤成像   总被引:3,自引:0,他引:3       下载免费PDF全文
向良忠  邢达  郭华  杨思华 《物理学报》2009,58(7):4610-4617
提出了一种基于聚焦线性阵列探测器的快速光声计算机断层成像技术(光声CT).在光声二维图像重建中,根据阵列探测器机械扫描和电子扫描相结合的组合扫描模式,提出了改进的有限场滤波反投影重建算法.一方面该算法适合多元探测器旋转扫描模式,另一方面探测器的指向性函数作为反投影的权重因子提高了系统的横向分辨率.同时,该成像系统还利用柱面声透镜实现Z轴方向上的聚焦扫描以实现三维层析成像.实验中,这套成像系统空间分辨率达到0.2mm,Z轴方向分辨率为1.5mm,扫描一幅二维图像仅需150s,得到 关键词: 光声CT 有限场滤波反投影算法 声透镜聚焦 乳腺肿瘤检测  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号