共查询到20条相似文献,搜索用时 0 毫秒
1.
Internal modes and internal oscillation of vector solitons associated with photoisomerization and necklace solitons in Bessel lattices are researched. While white noise gives rise to the unsmoothness of the vector solitons, the perturbation of internal modes results in the long-distance quasi-periodic oscillation of soliton shape. Internal modes of two-dimensional necklace solitons in Bessel lattices have both real and imaginary parts, which is different with the internal modes of one-dimensional solitons which have only real part. 相似文献
2.
Hongcheng Wang 《Frontiers of Physics》2016,11(5):114204
This paper presents a theoretical analysis of the existence and stability of multi-peak solitons in parity–time-symmetric Bessel optical lattices with defects in nonlinear media. The results demonstrate that there always exists a critical propagation constant μ c for the existence of multi-peak solitons regardless of whether the nonlinearity is self-focusing or self-defocusing. In self-focusing media, multi-peak solitons exist when the propagation constant μ > μ c . In the self-defocusing case, solitons exist only when μ < μ c . Only low-power solitons can propagate stably when random noise perturbations are present. Positive defects help stabilize the propagation of multi-peak solitons when the nonlinearity is self-focusing. When the nonlinearity is self-defocusing, however, multi-peak solitons in negative defects have wider stable regions than those in positive defects. 相似文献
3.
利用变分法和数值计算方法研究了空间调制作用下Bessel型光晶格中玻色-爱因斯坦凝聚体系中孤立子的稳定性, 给出了存在随空间非周期变化的线性Bessel型光晶格和非线性光晶格(原子之间非线性相互作用的空间调制)时, 各种参数组合下涡旋和非涡旋孤立子的稳定性条件. 首先, 利用圆对称的高斯型试探波函数得出描述体系稳定性参数满足的Euler-Lagrange方程和变分法分析体系稳定性所需要的有效作用势能的表达式. 然后, 根据有效作用势能是否具有局域最小值判断体系是否具有稳定状态, 得出体系具有稳定状态时参数所满足的条件. 最后, 利用有限差分法求解Gross-Pitaevskii方程验证变分法结果的正确性, 所得结果和变分法结果一致.
关键词:
Bessel型光晶格
非线性光晶格
孤立子
稳定性 相似文献
4.
光子晶格作为一种光学周期性离散体系,具有通常均匀介质所无法比拟的独特性质,它为空间离散孤子、表面波以及衍射操控等一系列线性和非线性离散动力学行为的实验观测提供了便利条件,同时在全光路由、全光开关和光子计算机等方面具有重要的应用前景.文章简要回顾了南开大学的研究小组近期在二维光子晶格中有关空间带隙孤子的一系列研究工作,包括二维基本带隙孤子、类偶极带隙孤子、带隙孤子串以及涡旋带隙孤子等.在有的实验过程中,文章作者清晰地观测到探测光束的频谱整形,波常数从具有反常衍射的导带底部演化到光子禁带中,并且通过干涉图反映 相似文献
5.
In this paper, we numerically demonstrate the (1+1)-dimensional dipole solitons can exist in a new Kerr-type optical lattice with longitudinal modulation that fades away and boosts up alternately. The solitons whose two dipoles simultaneously located at one lattice site and at two adjacent lattice sites are investigated, respectively. The results show that, in the two cases, the dipole solitons can be stably trapped in this kind of lattice by properly adjusting lattice parameters and soliton parameters when the repulsive force of dipoles balances the centripetal force resulting from the lattice potential effect on dipole solitons. In addition, the trapping of dipole solitons with an incident angle or the initial center position is discussed. 相似文献
6.
陈海军 《原子与分子物理学报》2015,32(6)
研究了两体和三体相互作用空间调制情形下Bessel型光晶格中准二维玻色-爱因斯坦凝聚体系中物质波孤立子的稳定性. 利用标准的变分法程序, 得出体系有效势能的表达式, 进而根据有效势能结构给出了体系的稳定性条件. 结果表明, 在有Bessel型光晶格和没有Bessel型光晶格的情况下, 体系均能形成稳定的孤立子解, 但是有晶格参与时, 体系有很大范围的稳定区间. 另外, 稳定性受两体相互作用和三体相互作用共同支配, 其中两体相互作用对体系的稳定性起主导作用, 三体相互作用和相互作用的空间调制只对稳定性起调节作用, 但是在特定情况下, 必须要有三体相互作用或者相互作用空间调制的参与才能形成稳定的孤立子解. 相似文献
7.
研究了两体和三体相互作用空间调制情形下Bessel型光晶格中准二维玻色-爱因斯坦凝聚体系中物质波孤立子的稳定性.利用标准的变分法程序,得出体系有效势能的表达式,进而根据有效势能结构给出了体系的稳定性条件.结果表明,在有Bessel型光晶格和没有Bessel型光晶格的情况下,体系均能形成稳定的孤立子解,但是有晶格参与时,体系有很大范围的稳定区间.另外,稳定性受两体相互作用和三体相互作用共同支配,其中两体相互作用对体系的稳定性起主导作用,三体相互作用和相互作用的空间调制只对稳定性起调节作用,但是在特定情况下,必须要有三体相互作用或者相互作用空间调制的参与才能形成稳定的孤立子解. 相似文献
8.
9.
We study the dynamics of vectorial coupled-mode solitons in one-dimensional photonic crystals with quadratic and cubic nonlinearities. Starting from Maxwell's equations, the vectorial coupled-mode equations for the envelopes of two fundamental-frequency optical mode and one low-frequency mode components due to optical rectification are derived by means of the method of multiple scales. A set of coupled soliton solutions of the vectorial coupled-mode equations is provided. The results show that a modulation of the fundamental-frequency optical modes occurs due to the optical rectification field resulting from the quadratic nonlinearity. The optical rectification field disappears when the frequency of the fundamental-frequency optical fields approaches the edge of the photonic bands. 相似文献
10.
Ci-bo LOU Li-qin TANG Dao-hong SONG Xiao-sheng WANG Jing-jun XU Zhi-gang CHEN 《Frontiers of Physics in China》2008,3(1):1-12
The study of wave propagation in periodic systems is at the frontiers of physics, from fluids to condensed matter physics,
and from photonic crystals to Bose-Einstein condensates. In optics, a typical example of periodic system is a closely-spaced
waveguide array, in which collective behavior of wave propagation exhibits many intriguing phenomena that have no counterpart
in homogeneous media. Even in a linear waveguide array, the diffraction property of a light beam changes due to evanescent
coupling between nearby waveguide sites, leading to normal and anomalous discrete diffraction. In a nonlinear waveguide array,
a balance between diffraction and self-action gives rise to novel localized states such as spatial “discrete solitons” in
the semi-infinite (or total-internal-reflection) gap or spatial “gap solitons” in the Bragg reflection gaps. Recently, in
a series of experiments, we have “fabricated” closely-spaced waveguide arrays (photonic lattices) by optical induction. Such
photonic structures have attracted great interest due to their novel physics, link to photonic crystals, as well as potential
applications in optical switching and navigation. In this review article, we present a brief overview on our experimental
demonstrations of a number of novel spatial soliton phenomena in light-induced photonic bandgap structures, including self-trapping
of fundamental discrete solitons and more sophisticated lattice gap solitons. Much of our work has direct impact on the study
of similar discrete phenomena in systems beyond optics, including sound waves, water waves, and matter waves (Bose-Einstein
condensates) propagating in periodic potentials.
相似文献
11.
We find the existence conditions for stationary dipole and tripole surface solitons formed at the interface of a nonlocal nonlinear medium and a lattice with linearly modulated frequency. We investigate how the degree of nonlocality, the depth, and the modulation frequency of the optical lattice field affect on the existence of the surface solitons and their dynamics. The relationship between the power and the model parameters is identified. The stability of the surface dipole and tripole solitons is numerically investigated. 相似文献
12.
Bingzhi Zhang 《Physics letters. A》2011,375(7):1110-1115
We investigate the formation of polarization vortex spatial optical solitons in optical lattice induced by a non-diffracting Bessel beam. The properties of these solitons in zeroth-order and first-order Bessel lattices with focusing and defocusing Kerr nonlinearity are discussed. It is found that these solitons have some analogies with phase vortex solitons carrying single positive or negative topological charge in these lattices. Besides, these polarization vortex solitons have complicated dynamical characteristic and can be stabilized in some parameter region. 相似文献
13.
We make use of a coordinate-free approach to implement Vakhitov-Kolokolov criterion for stability analysis in order to study
the effects of three-body atomic recombination and lattice potential on the matter-wave bright solitons formed in Bose-Einstein
condensates. We analytically demonstrate that (i) the critical number of atoms in a stable BEC soliton is just half the number
of atoms in a marginally stable Townes-like soliton and (ii) an additive optical lattice potential further reduces this number
by a factor of √1 − bg
3 with g
3 the coupling constant of the lattice potential and b = 0.7301.
相似文献
14.
We investigate two types of honeycomb lattice two-dimensional plasma photonic crystals that possess large photonic band gaps in the presence of dissipation. We obtain a clear insight into the band structures and find imaginary parts of the eigenvalue band structure at the symmetry points display discontinuous behaviour when the filling factor of plasma in type-1 structure is low. Further more, we show how the photonic band gaps are affected by the normalized plasma frequency, radius of cylinder, dielectric constant and collision frequency. Our results demonstrate the band gap extension by increasing normalized plasma frequency in both type structures and radius of plasma cylinders in type-1 structure. The width of band gaps could also be enlarged by decreasing dielectric cylinder's radius. The bands shift toward lower frequencies when relative dielectric constant increases in both two types. These results may provide theoretical instructions to design new optoelectronic devices. 相似文献
15.
Changming Huang 《Optics Communications》2011,284(18):4225-17188
We report on the dynamics of semi-localized nonlinear optical modes supported by an interface separating a uniform defocusing saturable medium and an imprinted semi-infinite photonic lattice. Out-of-phase and in-phase kink solitons composed by dark-soliton-like pedestals and oscillatory tails are found. Two branches of out-of-phase kink solitons exist in shallow lattices. Saturable nonlinearity enhances the pedestal height and renormalized energy flow of kink solitons evidently. While in-phase kink solitons are always unstable, out-of-phase kink solitons will be completely stable provided that lattice depth exceeds a critical value. Furthermore, stable kink solitons in the higher band gaps are also possible. Our results may give a helpful hint for understanding the dynamics of kink solitons with high pedestals in other fields. 相似文献
16.
We address the existence,stability and propagation dynamics of solitons supported by large-scale defects surrounded by the harmonic photonic lattices imprinted in the defocusing saturable nonlinear medium.Several families of soliton solutions,including flat-topped,dipole-like,and multipole-like solitons,can be supported by the defected lattices with different heights of defects.The width of existence domain of solitons is determined solely by the saturable parameter.The existence domains of various types of solitons can be shifted by the variations of defect size,lattice depth and soliton order.Solitons in the model are stable in a wide parameter window,provided that the propagation constant exceeds a critical value,which is in sharp contrast to the case where the soliton trains is supported by periodic lattices imprinted in defocusing saturable nonlinear medium.We also find stable solitons in the semi-infinite gap which rarely occur in the defocusing media. 相似文献
17.
18.
Sergey V. Suchkov Andrey A. Sukhorukov Jiahao Huang Sergey V. Dmitriev Chaohong Lee Yuri S. Kivshar 《Laser \u0026amp; Photonics Reviews》2016,10(2):177-213
One of the challenges of the modern photonics is to develop all‐optical devices enabling increased speed and energy efficiency for transmitting and processing information on an optical chip. It is believed that the recently suggested Parity‐Time (PT) symmetric photonic systems with alternating regions of gain and loss can bring novel functionalities. In such systems, losses are as important as gain and, depending on the structural parameters, gain compensates losses. Generally, PT systems demonstrate nontrivial non‐conservative wave interactions and phase transitions, which can be employed for signal filtering and switching, opening new prospects for active control of light. In this review, we discuss a broad range of problems involving nonlinear PT‐symmetric photonic systems with an intensity‐dependent refractive index. Nonlinearity in such PT symmetric systems provides a basis for many effects such as the formation of localized modes, nonlinearly‐induced PT‐symmetry breaking, and all‐optical switching. Nonlinear PT‐symmetric systems can serve as powerful building blocks for the development of novel photonic devices targeting an active light control.
19.
The characteristics of the cladding band structure of air-core photonic crystal fibers with silica rings in triangular lattice are investigated by using a standard plane wave method. The numerical results show that light can be localized in the air core by the photonic band gaps of the fiber. By increasing the air-filling fraction, the band gap edges of the low frequency photonic band gaps shift to shorter wavelength, whereas the band gap width decreases linearly. In order to make a specified light fall in the low frequency band gaps of the fiber, the interplay of the silica ring spacing and the air-filling fraction is also analyzed. It shows that the silica ring spacing increases monotonously when the air-filling fraction is increased, and the spacing range increases exponentially. This type fiber might have potential in infrared light transmission. 相似文献