首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S. Suchat  K. Paithoonwattanakij 《Optik》2010,121(21):1944-1947
We propose an interesting scheme on photon states generation using a fiber optic Mach Zehnder interferometer incorporating a fiber optic ring resonator without any optical pumping parts including in the system, which is available for long-distance link. In principle, the state of a quantum bit, it is known, unknown, or entangled to other systems. The desired quantum states are generated and transmitted in the link via a fiber optic. The transmission quality in terms of quantum fidelity is analyzed, where a high fidelity to the noiseless quantum channel is achieved by adding an ancillary photon after the signal photon within the correlation time of the fiber noise and by performing the quantum parity checking method. The error correction is also analyzed. For simplicity, feature and robustness against path-length mismatches among the nodes make our scheme suitable for multi-user quantum communication networks.  相似文献   

2.
Trusted relays are the main state-of-the-art way to realize quantum key distribution networks.However, it is hard to require that all nodes in the network are fully trusted. In a multipath keytransmission mechanism, the nodes can be weakly trusted because the secret key can be split into many parts and each part is transmitted to the receiver through a different path. However, if the capacity of a node's quantum key pool is poorly designed, an attacker, Eve may eavesdrop on the communicating parties' secret message by initiating a redirection attack. In this paper, we show that Eve can trigger a cascading collapse effect by collapsing one of the edges in the network and forcing the communication parties to transmit the message through the nodes controlled by Eve. The influence of the traffic transfer ratio and the control parameters of the edge load on the breakdown probability of the edge are analyzed using a simulation. In order to effectively defend against the cascading attack, it is important for the designer to handle the relationship between the traffic and the capacity of the quantum key pool of each node in the network.  相似文献   

3.
We propose a scheme to remove the demand of transmitting a high-brightness local oscillator (LO) in continuous-variable measurement-device-independent quantum key distribution (CV-MDI QKD) protocol, which we call as the self-referenced (SR) CV-MDI QKD. We show that our scheme is immune to the side-channel attacks, such as the calibration attacks, the wavelength attacks and the LO fluctuation attacks, which are all exploiting the security loopholes introduced by transmitting the LO. Besides, the proposed scheme waives the necessity of complex multiplexer and demultiplexer, which can greatly simplify the QKD processes and improve the transmission efficiency. The numerical simulations under collective attacks show that all the improvements brought about by our scheme are only at the expense of slight transmission distance shortening. This scheme shows an available method to mend the security loopholes incurred by transmitting LO in CV-MDI QKD.  相似文献   

4.
Kak’s quantum key distribution (QKD) protocol provides not only the distribution but also the integrity of secret key simultaneously in quantum channel. Consequently the additional exchange of information, used to check whether an eavesdropper exists, is unnecessary. In this comment, we will point out the failure of Kak’s protocol and show that Kak’s protocol does not have the joint distribution and integration that the author declares in [1].  相似文献   

5.
S. Suchat  P.P. Yupapin 《Optik》2010,121(17):1540-1544
We propose a remarkably simple system of a continuous variable quantum key distribution using chaotic signals generated by a soliton pulse within a nonlinear micro-ring resonator system. By using the appropriate soliton input power and micro-ring parameters, continuous signals are generated spreading over the spectrum. Polarized photons are formed incorporating the polarization control unit into the micro-ring system, which allows different time slot entangled photons to be randomly formed. Two different frequency bands for up-down-link converters can be selected (filtered) and performed, which is available for the simultaneous up-down-link application in the telephone networks. Results obtained have shown that the application of such a system for continuous variable quantum cryptography via optical-wireless up-down-link converters within a single system is plausible.  相似文献   

6.
Discrete modulation is proven to be beneficial to improving the performance of continuous-variable quantum key distribution (CVQKD) in long-distance transmission. In this paper, we suggest a construct to improve the maximal generated secret key rate of discretely modulated eight-state CVQKD using an optical amplifier (OA) with a slight cost of transmission distance. In the proposed scheme, an optical amplifier is exploited to compensate imperfection of Bob's apparatus, so that the generated secret key rate of eight-state protocol is enhanced. Specifically, we investigate two types of optical amplifiers, phase-insensitive amplifier (PIA) and phase-sensitive amplifier (PSA), and thereby obtain approximately equivalent improved performance for eight-state CVQKD system when applying these two different amplifiers. Numeric simulation shows that the proposed scheme can well improve the generated secret key rate of eight-state CVQKD in both asymptotic limit and finite-size regime. We also show that the proposed scheme can achieve the relatively high-rate transmission at long-distance communication system.  相似文献   

7.
《Physics letters. A》2014,378(11-12):863-868
Two-way Quantum Key Distribution (QKD) schemes commonly make use of a set of unitaries corresponding to binary encodings which can in principle be distinguished perfectly. In this paper, inline with the proposal in Chiribella et al. (2008) [13], we introduce a non-entangled two-way QKD scheme with two sets of unitaries of which the elements in one set can be viewed as ‘nonorthogonal’ to elements in the other with the aim of naturally suppressing an eavesdropper's information to provide for a higher security threshold. Security analysis is done in the context of individual attack strategies for a quick comparison with the conventional two-way QKD scheme. Given the richer structure of the improvement, future direction is also discussed.  相似文献   

8.
Building a quantum key distribution network is crucial for practical quantum cryptography. We present a scheme to build a star topology quantum key distribution network based on wavelength division multiplexing which, with current technology, can connect at least a hundred users. With the scheme, a 4-user demonstration network was built up and key exchanges were performed.  相似文献   

9.
P.P. Yupapin 《Optik》2010,121(5):422-425
We propose a novel system of quantum key generation via a micro ring resonator for mobile telephone network use, where the conversation messages can be secured by using a quantum code/decode (CODEC) technique incorporated in the public networks. The system consists of a set of micro ring devices incorporating a Mach-Zehnder interferometer (MZI). The entangled photon with different time slots is generated via each micro ring device, which is connected to an MZI. In each micro ring device, the time delay and the Kerr nonlinearity effect are exploited for the qubit (quantum key) generation. At present, fabrication technology has been promising in that the quantum key can be implemented within the mobile telephone hand set and networks, and it has also shown the feasibility of using as perfect security telephone networks.  相似文献   

10.
《Physics letters. A》2020,384(16):126322
Quantum key distribution (QKD) is a promising application to establish unconditional secure communications by quantum mechanics. However, its widespread application still faces a great challenge, that is, the fundamental linear key-rate constraint called Pirandola-Laurenza-Ottaviani-Banchi (PLOB) bound. Recently, twin-field QKD (TF-QKD) was proposed (Lucamarini et al., 2018 [4]), it overcomes the constraint mentioned above. However, the original TF-QKD is based on the phase-encoding strategy, which requires active alignment. In this paper, we improve the original TF-QKD with the photon orbital angular momentum (OAM), and propose a novel reference frame independent protocol to overcome the reference frame dependence. No more alignment procedure is needed, and the intrinsic misalignment errors are eliminated by utilizing the rotation-invariance of OAM photons. Besides, the security performance is also improved.  相似文献   

11.
A novel quantum key distribution scheme based on the path-spin hybrid entanglement is proposed and analyzed. In this proposed scheme, the entanglement between the path and the spin degrees of freedom is confined locally with the single particle and transmitted in one-way direction. Two split pulses of a single spin-1/2 particle are not simultaneously transmitted through the public quantum channels for the security goal. The scheme is robust against any individual attack even in noisy environments. Moreover, it also has high-efficiency since one single particle can be used to generate one bit key on average.  相似文献   

12.
A generalized version for a qubit based two-way quantum key distribution scheme was first proposed in the paper [Phys. Lett. A 358 (2006) 85] capitalizing on the six quantum states derived from three mutually unbiased bases. While boasting of a higher level of security, the protocol was not designed for ease of practical implementation. In this work, we propose modifications to the protocol, resulting not only in improved security but also in a more efficient and practical setup. We provide comparisons for calculated secure key rates for the protocols in noisy and lossy channels.  相似文献   

13.
Reference-frame-independent quantum key distribution (RFI-QKD) has been demonstrated to be reliable and useful both in theories and experiments, which is intrinsically robust against slowly varying reference frames. In this paper, we propose an efficient scheme of passive decoy-state RFI-QKD based on the parametric down-conversion source, where a beam splitter splits the idler pulses into four local detection events to improve the performance of RFI-QKD systems. In addition, we demonstrate the worst relative rotation of reference frames in our scheme. Simulation results show that our scheme can achieve good performance even at the worst-case scenario.  相似文献   

14.
N. Pornsuwanchroen  P.P. Yupapin 《Optik》2010,121(12):1123-1128
We propose a novel system of the simultaneous continuous variable quantum key distribution (QKD) and quantum dense coding (QDC) using a soliton pulse within the nonlinear micro-ring resonator devices. By using the appropriate soliton input power and nonlinear micro-ring parameters, the continuous signals are generated spreading over the spectrum. The polarized photons are formed by using the polarization control unit incorporating into the micro-ring system, which is allowed the different time slot entangled photon pair randomly formed. Results obtained have shown that the application of such a system for the simultaneous continuous variable quantum cryptography and dense coding within a single system is plausible, which is can be implemented within the mobile telephone hand set and networks.  相似文献   

15.
We propose a rotationally-invariant quantum key distribution scheme that uses a pair of orthogonal qubit trines, realized as mixed states of three physical qubits. The measurement outcomes do not depend on how Alice and Bob choose their individual reference frames. The efficient key generation by two-way communication produces two independent raw keys, a bit key and a trit key. For a noiseless channel, Alice and Bob get a total of 0.573 key bits per trine state sent (98% of the Shannon limit). This exceeds by a considerable amount the yield of standard trine schemes, which ideally attain half a key bit per trine state. Eavesdropping introduces an ?-fraction of unbiased noise, ensured by twirling if necessary. The security analysis reveals an asymmetry in Eve's conditioned ancillas for Alice and Bob resulting from their inequivalent roles in the key generation. Upon simplifying the analysis by a plausible symmetry assumption, we find that a secret key can be generated if the noise is below the threshold set by ?=0.197.  相似文献   

16.
宋汉冲  龚黎华  周南润 《物理学报》2012,61(15):154206-154206
基于量子远程通信的原理, 本文借助双模压缩真空态和相干态, 提出一种连续变量量子确定性密钥分配协议. 在利用零差探测法的情况下协议的传输效率达到了100%. 从信息论的角度分析了协议的安全性, 结果表明该协议可以安全传送预先确定的密钥. 在密钥管理中, 量子确定性密钥分配协议具有量子随机性密钥分配协议不可替代的重要地位和作用. 与离散变量量子确定性密钥分配协议相比, 该协议分发密钥的速率和效率更高, 又协议中用到的连续变量量子态易于产生和操控、适于远距离传输, 因此该协议更具有实际意义.  相似文献   

17.
A multi-user quantum key distribution protocol [C.H. Hong et al., Opt. Commun. 283 (2010) 2644] was proposed, in which any two among n users of the system can communicate with each other, even though there is no direct quantum channel between them. Nevertheless, we show that the mediator Trent, who performs entanglement swapping in this protocol, has a way to eavesdrop on the communication between the two users without being detected. We also give an effective method to solve the security leak.  相似文献   

18.
Quantum key distribution enables unconditionally secure key distribution between two legitimate users.The information-theoretic security is guaranteed by the fundamental laws of quantum physics.Initially,the quantum key distribution protocol was proposed based on the qubits.Later on,it was found that quantum continuous variables can also be exploited for this target.The continuous variable quantum key distribution can build upon standard telecommunication technology and exhibits a higher secret key rate per pulse at a relatively short distance due to the possibility of encoding more than 1 bit per pulse.In this article,we review the current status of the continuous variable quantum key distribution research,including its basic principle,experimental implementations,security and future directions;the experimental progress in this field made by our group is also presented.  相似文献   

19.
T. Honjo  K. Inoue 《Optics Communications》2011,284(24):5856-5859
Differential-phase-shift (DPS) quantum key distribution (QKD) is one of the QKD protocols, featuring simplicity for practical implementation. It uses a coherent pulse train whose phase should be stable at least within the pulse interval. This paper quantitatively investigates the phase stability required for DPS-QKD systems. The phase stability is characterized by the spectral linewidth of the light source. A theoretical model and experiments are presented, the results of which indicate that the linewidth should be, for example, less than 0.35% of the free-spectral-range of an asymmetric Mach-Zehnder interferometer in a receiver to achieve quantum bit error rate of less than 0.5% due to linewidth broadening of the light source.  相似文献   

20.
This study points out that a malicious gateway in Hong et al.'s multi-user quantum key distribution protocol [Optics Communication 283 (2010) 2644] may be able to reveal the secret key of the protocol without being detected. An improvement is suggested to avoid the weakness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号