首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An erbium-doped fiber laser (EDFL) constructed in a master oscillator and power amplifier (MOPA) configuration is analyzed. The pump powers for the fiber cavity laser and the booster amplifier stages are managed properly to achieve maximal pump conversion efficiency. Our design achieves a pump conversion efficiency of 91.4%, corresponding to a quantum efficiency of 96.6%, for a 1565.8 nm MOPA laser pumped by a total power of 300 mW at 1480 nm. The optimized MOPA laser shows a 25% enhancement in the pump conversion efficiency, compared to a non-MOPA fiber laser. A side lobe suppression ratio of 48 dB for the optimized MOPA laser is observed.  相似文献   

2.
A simple and effective switchable dual-wavelength polarization-maintaining erbium-doped fiber laser is proposed and demonstrated. Only using a uniform fiber Bragg grating written directly in a segment of the photosensitive and polarization-maintaining erbium-doped fiber as the wavelength selector and an optical circulator as the all-reflecting mirror, a stable simultaneous dual-wavelength oscillation is achieved with a wavelength spacing of 0.364 nm experimentally by exploiting the polarization hole burning effect at room temperature. The output can be switched between single- and dual-wavelength by adjusting the polarization controller. The 3-dB bandwidth and the side mode suppression ratio of the laser’s outputs are measured to be less than 0.01 nm and more than 50 dB. The power fluctuation and wavelength drift are measured to be less than 0.50 dB and 0.020 nm over an hour.  相似文献   

3.
A stable and narrow wavelength spacing multiwavelength erbium-doped fiber laser is proposed and demonstrated. The laser can produce simultaneous dual- and triple-wavelength lasing oscillations with a narrow wavelength spacing of less than 0.1 nm via using a single fiber Bragg gratings written in polarization-maintaining (PM) fiber. By adjusting polarization controller, the wavelength spacing of dual-wavelength lasing oscillations can be tuned to as small as 0.032 nm. The maximum amplitude variation for every lasing wavelength is less than 0.5 dB. The room-temperature operation principle is based on the polarization hole burning and deeply saturated effect in an ordinary erbium-doped fiber ring laser (EDFRL). The laser has the advantages of simple all-fiber configuration, low cost, high stability and operating at room temperature.  相似文献   

4.
A compact and tunable erbium-doped fiber laser is demonstrated using a highly doped fiber and a microfiber knot resonator (MKR) structure which is laid on the surface of a small peltier. The MKR functions as both a reflector and a tunable filter where tunability is achieved by varying the temperature of the resonator by heating the peltier. A stable laser output is achieved at the 1533 nm region with an optical signal to noise ratio (OSNR) of 27 dB using a 65 mW of 980 nm pump power. The operating wavelength of the laser can be tuned from 1532.60 nm to 1533.49 nm as the temperature is increased from the room temperature of 24 to 90 °C. It is observed that the operating wavelength shifts to a longer wavelength as the temperature increases with an efficiency of 12.4 pm/°C. This is due to the thermally induced optical phase shift attributable to the changes in effective refractive index and optical path length of the MKR loop.  相似文献   

5.
We review the development of wavelength stabilized 980 nm pump laser modules without active temperature stabilization for applications in erbium-doped fiber amplifiers. Operation over a wide temperature range with an output power exceeding 400 mW at an ambient temperature of 70°C is demonstrated. The overall reliability of uncooled modules is estimated to be well below 500 FIT at all operating conditions. Such devices are made possible by continuous development and steady improvement of the pump laser chip, the optimization of the fiber Bragg grating stabilization scheme, careful design of the module package, and extended reliability analysis on the basis of stress tests as well as field data.  相似文献   

6.
We experimentally demonstrate a simple-structure but efficient multiwavelength erbium-doped fiber laser based on nonlinear polarization rotation assisted by four-wave-mixing (FWM). Based on the combination of these two nonlinear mechanisms contributing to intensity-dependent loss to alleviate mode competition, the stable multiwavelength operation at room temperature can be realized in a length of dispersion-shifted fiber. We achieved up to 38-wavelength generation with a spacing of ∼0.4 nm in the laser. In addition, through tuning the birefringence fiber filter, the lasing wavelength can be accurately tuned in the free spectrum range.  相似文献   

7.
We present a wavelength-switchable erbium-doped fiber ring laser consisting of an anti-reflection coated Fabry-Perot laser diode (FP-LD) and a sampled fiber Bragg grating (SFBG). The wavelength switching is obtained easily by the shift of FP mode with respect to the reflection peaks of the SFBG. The proposed laser apparatus not only simultaneously emits two wavelengths but also switches between the two wavelengths by adjusting the modes of FP-LD with a change of the injection current of the FP-LD as little as ∼1 mA. The proposed wavelength-switchable erbium-doped fiber ring laser exhibits high laser performance with side-mode suppression ratio (SMSR) ?50 dB.  相似文献   

8.
A multiwavelength fiber ring laser that is based on an S-band erbium-doped fiber amplifier (EDFA) and a semiconductor optical amplifier (SOA) is developed. An optical switch is used to switch the multiwavelength fiber laser between S-band and L-band. This fiber laser can stably lase seven wavelengths in the S-band or 28 wavelengths in the L-band. Additionally, the lasing wavelengths with a signal-to-noise ratio of over 33 dB and a wavelength spacing of 100 GHz are demonstrated experimentally. The average powers of the lasing wavelength in the S-band and the L-band are −7.53 and −12.15 dBm, respectively.  相似文献   

9.
A global design of an erbium-doped fiber and an open-loop erbium-doped fiber amplifier (EDFA) in a steady-state operation is discussed by applying genetic algorithms. Taking a signal gain and a bandwidth as objective functions, 7 parameters of the EDFA (erbium concentration, core radius, erbium-doped radius, refractive index difference, fiber length, pumping wavelength and signal power) are optimized by solving optical propagation equations, assuming a homogenous two-level active medium and a single-mode propagation. There is evidence to show that the 1480 nm pump utilized in usual EDFAs is not an optimal choice, which should be chosen around 1460 nm. The optimal core radius ranges 0.465–0.548 μm on pumping power 50–200 mW. Under different design objects and with different pumping powers, however, there are different optimal Er-doped concentrations, reflective index differences and fiber lengths. As a single fiber EDFA, 35 dB signal gain or 35 nm bandwidth is obtained with the 7 optimal parameters, 100 mW pumping power and 0.001 mW input signal power.  相似文献   

10.
Jae-Ho Han 《Optik》2010,121(24):2266-2268
We have experimentally shown wavelength mode switching in a dual-wavelength Erbium-doped single cavity fiber laser where the initial two wavelengths of 1 nm spacing are determined by the cascaded reflection type short-period fiber Bragg gratings having two different centre wavelengths of 1550.5 and 1551.5 nm. The lasing mode depends on the polarization in the ring cavity to migrate from one wavelength to another or operates in both modes in a polarization beam splitter output. To effectively control the polarization in the ring cavity, the polarization controllers were positioned before and after the polarization beam splitter. This method of wavelength switching provides a simple way of mode tuning in dual-wavelength fiber lasers.  相似文献   

11.
Xue-Ming Liu   《Optics Communications》2006,260(2):554-559
The analytic solutions of coupled-mode equations of four-wave mixings (FWMs) are achieved by means of the undepleted approximation and the perturbation method. The self-stability mechanism of the FWM processes is theoretically proved and is applicable to design a new kind of triple-wavelength erbium-doped fiber lasers. The proposed fiber lasers with excellent stability and uniformity are demonstrated by using a flat-near-zero-dispersion high-nonlinear photonic-crystal-fiber. The significant excellence is analyzed in theory and is proved in experiment. Our fiber lasers can stably lase three waves with the power ripple of less than 0.4 dB.  相似文献   

12.
A stable and broad bandwidth multiwavelength erbium-doped fiber laser is proposed and demonstrated successfully. A nonlinear optical loop mirror which induces wavelength-dependent cavity loss and behaves as an amplitude equalizer is employed to ensure stable room-temperature multiwavelength operation. Up to 50 wavelengths lasing oscillations with wavelength spacing of 0.8 nm within a 3-dB spectral range of 1562-1605 nm has been achieved. The measured power fluctuation of each wavelength is about 0.1 dB within a 2-h period.  相似文献   

13.
In the paper, a ring double-Brillouin-frequency spaced multi-wavelength Brillouin erbium-doped fiber laser based on non-linear amplified fiber loop mirror filter is demonstrated, in which the non-linear amplified fiber loop mirror (AFLMF) is used as a filter. At the 980 nm pump power of 10.29 dBm, the tunable laser source center wavelength of 1563 nm and power of −3 dBm, up to 12 even output channels with 0.16 nm spacing are achieved. At the same time, we study the influence of 980 nm pump power, the polarization controller and the tunable laser source center wavelength on the number of Stokes light wave.  相似文献   

14.
A novel and simple Erbium-doped fiber laser by using cascaded fiber Bragg gratings (FBGs) written in high-birefringence fibers for switchable multi-wavelength operation is proposed. Due to two-peak reflection with orthogonal polarizations of the FBG, the polarization hole-burning effect in the cavity is greatly enhanced. Experimental results show that the stable dual- and three-wavelength lasing operation with very narrow wavelength separation (0.39 nm) can be generated at room temperature. The configuration is simple and flexible. Only by adjusting polarization controllers (PCs), the laser can be switched among the stable single-, dual- and three-wavelength lasing operations.  相似文献   

15.
We have demonstrated a continuous-wave (CW) all fiber laser operation at 1558.4 nm of a diode-pumped erbium-doped PCF laser based on 9.6 m erbium-doped PCF. The maximum output power and the threshold of the fiber laser are 49.4 mW and 6.67 mW, respectively. We show that it is possible to achieve a high stability and beam quality laser, which has a great application potential in optical communication field in future.  相似文献   

16.
A new mechanism to induce polarization hole burning effect in Er-doped fiber ring lasers is presented. By using this effect, incorporating with the counter-propagation of the two light beams, the inhomogeneous in the gain medium broadening was significantly increased, and thus a stable dual-frequency Er-doped fiber ring laser operating in single longitudinal mode and single-frequency was demonstrated. Frequency spacing was tunable from 0.47 GHz to THz.  相似文献   

17.
It was found that the output power of the distributed feedback fiber lasers would be improved after annealing or left unused for several days after the laser had been fabricated, and the output of the fundamental mode would not increase but be clamped while the ±1 order modes would be predominant with the enhancement of the coupling coefficient during the fabrication. The paper discussed the influence of UV-induced fiber loss on the fiber phase-shifted DFB lasers. Due to the gain saturation and fiber internal loss, which included the temperament loss and permanent loss, there was an optimum coupling coefficient for the DFB fiber lasers that the higher internal fiber loss corresponded to the lower optimum values of coupling coefficient.  相似文献   

18.
D. Liu  N.Q. Ngo  D. Liu 《Optics Communications》2009,282(8):1611-6860
A stable dual-wavelength erbium-doped fiber laser with a linear cavity is formed by a polarization-maintaining uniform fiber Bragg grating (PM-FBG) and a polarization-maintaining linearly chirped fiber Bragg grating (PM-LCFBG), both of which were fabricated on a high-birefringence (Hi-Bi) fiber. Experimental results show stable dual-wavelength lasing operation with a wavelength separation of ∼0.22 nm, which can be tuned down to as small as 0.05 nm and a large optical signal-to-noise ratio (OSNR) of over 40 dB under room-temperature. Microwave signal at frequency of 9.41, 18.03 and 27.46 GHz is achieved by heterodyned the output lasing wavelengths on a photodetector.  相似文献   

19.
A multiwavelength laser source is demonstrated with a high power erbium-doped fiber amplifier as the gain medium. A highly nonlinear photonic crystal fiber (PCF) is inserted in the ring cavity to provide nonlinear gain by four-wave mixing. A Sagnac loop is incorporated in the ring cavity serving as a comb-like multichannel filter. The comparison between fiber ring laser without PCF and with PCF shows that the highly nonlinear PCF can generate a larger number of excited wavelengths and help stabilize the output power.  相似文献   

20.
Erbium-doped fiber lasers are normally actively mode-locked through amplitude modulation or phase modulation. In this paper, we demonstrate that the laser can also be mode-locked by employing polarization modulation with a polarization-dependent cavity loss. We obtain a nearly transform-limited mode-locked pulse train at 10 GHz repetition rate with timing jitter as low as 164 fs. The timing jitter is only limited by the timing jitter of the driving signal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号