共查询到20条相似文献,搜索用时 0 毫秒
1.
Tanay Chattopadhyay 《Optik》2011,122(16):1486-1491
All-Optical XOR Logic is a key technology for performing a set of operations in optical time division multiplexing (OTDM) multi-access network. In this paper an All-Optical Boolean XOR logic gate with Terahertz Optical Asymmetric Demultiplexer (TOAD) based interferometric switch is designed and described. In this proposed XOR gate, no additional input light source is used. Numerical simulation is also presented, which verifies the theoretical results. Contrast ratio, extinction ratio, amplitude modulation, bit error rate and signal to noise ratio values have also been analyzed. 相似文献
2.
The application of multi-valued (non-binary) signals can provide a considerable relief in transmission, storage and processing of large amount of information in digital signal processing. Optical multi-valued logical operation is an interesting challenge for future optical signal processing where we can expect much innovation. A novel all-optical quaternary successor (QSUC) circuit with the help of semiconductor optical amplifier (SOA)-assisted Sagnac switch is proposed and described. This circuit exploits the polarization properties of light. Different logical states are represented by different polarization state of light. Simulation result confirming described method is given in this paper. Proposed all-optical successor circuit can take an important and significant role in designing of all-optical quaternary universal inverter and modulo arithmetic unit (addition and multiplication). 相似文献
3.
4.
Tanay Chattopadhyay 《Optik》2010,121(7):617-622
Multi-valued logic can be viewed as an alternative approach to solving many problems in transmission, storage and processing of large amount of information in digital signal processing. For the first time to our knowledge, the principal of possibilities of design of all-optical quaternary multi-valued literals circuit (truncated sum, truncated difference and down literals) are proposed and described. Here the different quaternary logical states are represented by different polarized state of light. Terahertz optical asymmetric demultiplexer (TOAD) based interferometric switch can take an important role here. Computer simulation result (by Mathcad-7.0) confirming described methods and conclusion are given in this paper. 相似文献
5.
In this article an asymmetric intersubband quantum well structure as a high temperature terahertz (THz) optical switch is proposed. In our proposed structure the incoming low power energy photon (THz control signal) causes an optical switching. In this structure we introduce an optical terahertz switch based on coherent population trapping (CPT) phenomena. In the presence of electromagnetic THz field, quantum interference between the terahertz control field and short-wavelength probe field under appropriate condition, the medium becomes transparent (zero absorption) for the probe field. So the absorption and refraction characteristic of optical probe field can be modified with THz radiation. Therefore this idea is suitable for all – optical terahertz switching. 相似文献
6.
Ternary Galois field (GF3) arithmetic can take an important and significant role in future information processing with multi-valued logic (MVL). An all optical circuit for two arithmetical operations (addition and multiplication) in ternary Galois field with OPNLM switch is proposed and discussed. The different states of polarization of light are taken as different logic states. An outline of Ternary Galois field sum of product (TGFSOP) is also discussed. Mathematical simulation has confirmed the result. 相似文献
7.
In conduction of parallel logic, arithmetic and algebraic operations, optics has already proved its successful role. Since last few decades a number of established methods on optical data processing were proposed and to implement such processors different data encoding/decoding techniques have also been reported. Currently frequency encoding technique is found be a promising as well as a faithful mechanism for the conversion of all-optical processing as the frequency of light remains unaltered after refection, refraction, absorption, etc. during the transmission of light. There are already proposed some frequency encoded optical logic gates. In this communication the authors propose a new and different concept of frequency encoded optical logic gates and optical flip-flop using the non-linear function of semiconductor optical amplifier. 相似文献
8.
An all-optical scheme for simultaneously realizing OR and AND logic gates based on three-input four-wave mixing (FWM) arising in a single semiconductor optical amplifier (SOA) is proposed and demonstrated. It has the ability to process not only conventional non-return-to-zero-ON-OFF-keying (NRZ-OOK) and return-to-zero-OOK (RZ-OOK) formats but also carrier-suppressed return-to-zero-OOK (CSRZ-OOK) format signals. Firstly, the performance of 40 Gb/s logic operation is numerically evaluated by a comprehensive dynamic SOA model considering three input signal induced FWM effect. Then, 10 Gb/s experimental demonstrations with clear waveforms and high extinction ratios (ERs) further verify the logic integrity of this scheme. Thus, the OR and AND logic gates simultaneously achieved within a single logic unit is compact and cost-effective for future optical signal processing applications. 相似文献
9.
We experimentally and theoretically demonstrate 40 Gb/s all-optical logic NOR and OR gates based on a semiconductor optical amplifier (SOA) and a blue shifted optical bandpass filter (OBF). Two kinds of data formats are discussed, namely return-to-zero (RZ) format and nonreturn-to-zero (NRZ) format. The logic NOR and OR functions of RZ format are realized at the OBF detuning of −0.22 nm and −0.44 nm, respectively. The logic NOR function of NRZ format is realized at the OBF detuning of −0.24 nm. The simulation is in good agreement with the experimental results when the linewidth enhancement factor is 5.5. The simulation also shows that the SOA with large linewidth enhancement factor is preferred to achieve NOR and OR functions with good performance. The input data signal is of good pulsewidth-tolerance for NOR function, whereas not for OR function. The high Q factor could be obtained at narrow pulses injection. 相似文献
10.
Photon being the ultimate unit of information with unmatched speed and with data package in a signal of zero mass, the techniques of computing with light may provide a way out of the limitations of computational speed and complexity inherent in electronics computing. Information processing with photon as information carrying signal has shown a high level potentiality through the researches in last few decades. The driving force behind this evolution has been the utilization of interferometric configurations that employ a semiconductor optical amplifier (SOA) as the nonlinear element in combination with cross-phase modulation to achieve switching by means of light. Here, in this paper we present an all-optical circuit of programmable logic device (PLD) with the help of SOA-MZI (Mach-Zehnder interferometer) based optical tree-structured splitter. Numerical simulation result confirming described method is reported here. This paper also explains the applicability of this scheme to perform logical and arithmetic operations in all-optical domain. 相似文献
11.
The performances of all-optical logic gates XOR, AND, OR, NOR and NAND based on semiconductor optical amplifier (SOA) have been simulated including the effects of amplified spontaneous emission (ASE). For the parameters used, all-optical logic gates using SOA are capable of operating at speed of 80 Gb/s. 相似文献
12.
Lanlan Li Jian Wu Jifang Qiu Bingbing Wu Kun Xu Xiaobin Hong Yan Li Jintong Lin 《Optics Communications》2010,283(19):3608-3612
We demonstrate a reconfigurable all-optical logic gate for NRZ-PolSK signal based on FWM in a highly nonlinear fiber at 10 Gb/s. Half subtracter, XOR, AB?, āB or XNOR, AND, and NOR logic gates can be implemented simultaneously. The input power for the HNLF is optimized to be as low as about 15.2 dBm and the high Q factors above 8 dB for eye diagrams are achieved. Experimental results show Q factors of AB?, āB, AND, and NOR were higher than those of XOR, and XNOR. Error-free operation is achieved experimentally for 10 Gb/s 27-1 pseudorandom bit sequence (PRBS) data. Power penalties for the logic gate are less than 3 dB. Simulation analysis about the wavelength characteristic for all logic gates is given and it predicts that the reconfigurable logic gate can realize error-free operation when the wavelength separation is less than 5 nm. 相似文献
13.
Multiplexer and De-multiplexer operation play a very important role in all-optical computation, communication and control. Considerable number of multiplexing – de-multiplexing scheme in digital optical processing have already been reported. A design of all-optical ternary Multiplexer De-multiplexer circuit with optical nonlinear material (OPNLM) based switch is proposed and described in this paper. Different logic states have been represented by different polarization states of light. Logical simulation is also included here. This circuit will be useful in future all-optical multi-valued logic based computing and information processing system. 相似文献
14.
K. Eftekhari 《Optics Communications》2010,283(9):1817-685
We propose a novel all-optical controllable switch using photonic crystal cavity. For doing this work, the dipole induced transparency phenomenon realized through interaction of light with multilevel nanocrystals is used. Multilevel nanocrystals are doped to photonic crystal rods. Using the proposed structure and applying the control field, the absorbing medium converts to transparent one and switching operation is obtained. Analytical relation for evaluation of the proposed device considering quantum optical effects is presented and studied by investigation of effects of parameters on switching characteristics. We show that high quality all-optical switching operation can be obtained. 相似文献
15.
A comprehensive theoretical model of an ultrafast all-optical Boolean XOR gate implemented with a semiconductor optical amplifier (SOA)-assisted Sagnac interferometer is presented. The model accounts for the SOA small signal gain, linewidth enhancement factor and carrier lifetime, the switching pulses energy and width and the Sagnac loop asymmetry. By undertaking a detailed numerical simulation, the influence of these key parameters on the metrics that determine the quality of switching is thoroughly investigated and simple design rules are extracted for their proper selection so as to ensure optimum operation. The obtained results are in good agreement with the published experimental measurements and confirm the feasibility of realizing the gate at 10 Gb/s with fairly high performance. The model can be extended for studying more complex all-optical circuits of enhanced functionality in which the XOR gate is the basic building block. 相似文献
16.
17.
A synthetic joint Fourier transform (SJFT) correlator is proposed for the realization of generalized logic problems. As a case study, a multi-channel SJFT correlator is employed to realize a multi-output logic unit. For a given correlator set-up, this particular scheme ensures the maximal utilization of space bandwidth product. This work establishes a pragmatic approach for implementing real-time programmable content addressable memory for information processing. 相似文献
18.
The ability of an optical delay interferometer (ODI) to suppress the pattern effect that is inherently present in a straightforward, solitary semiconductor optical amplifier (SOA) whose dynamic response is slower than the period of its driving high-speed return-to-zero (RZ) data signal is theoretically investigated. For this purpose an existing comprehensive model that simulates and links the operation of these two elements is methodically applied to their concatenated configuration. In this manner an extensive set of curves is numerically obtained, which allow to analyze and assess the impact of the input pulse energy and width as well as of the SOA carrier lifetime, linewidth enhancement factor and small signal gain on the amplitude modulation of the transmitted sequence at the output of each one of these block units. Their thorough study and interpretation reveals that the employment of the ODI can significantly reduce the value of this quality metric resulting from a single SOA only. The main offered benefit, however, is that any technical restrictions regarding the involved critical parameters can be considerably relaxed while at the same time their useful operational range can be extended. These important findings highlight the necessity of placing this passive device after the SOA and exploiting it in order to effectively alleviate the detrimental pattern-dependent degradation. This fact in conjunction with its overall practicality renders it a promising candidate for enhancing, within the frame of the proposed scheme, the performance of SOAs that are employed as pure amplification elements in fiber-optic communication systems and networking applications. 相似文献
19.
Polarization insensitivity is a fundamental requirement for wavelength conversion technique in the future all-optical networks. Our experimental results show that a co-polarization pump configuration based on four-wave mixing in high-nonlinear fiber can reduce largely the polarization sensitivity. We have theoretically investigated those experimental phenomena, and the theoretical analyses are in good agreement with experimental results. 相似文献
20.
We report the static and dynamic properties of an all-optical inverter based on an 850 nm Vertical Cavity Semiconductor Optical Amplifier (VCSOA). The inverter exhibits low switching power requirements (~ 15 μW), large on/off contrast ratio (> 11 dB), and high speed operation (~ 1.4 GHz). Large and small signal measurements show that the speed of operation and the on/off contrast ratio improve with increased bias current. This holds important prospects for the development of VCSOA-inverters for high-speed, low-power optical logic applications. Finally, a theoretical model of the VCSOA-inverter has been employed giving good agreement with experiments. 相似文献