首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The delay of optical signal is determined by the refractive index and length of optical fiber, and temperature would have an intense influence on the index. To establish the relationship between refractive index and temperature, the temperature characteristics of refractive index was analyzed and the thermo-optical coefficient equation was derived according to the polarization of the induced electric dipole moment in SiO2 optical fiber. A measuring system based on optical fiber delay was carried out to measure the index within the temperature range of −30 °C to 70 °C and the experimental result was compared with the theoretical result. The final result shows that the relationship between refractive index and temperature is linear in the temperature range of discussion.  相似文献   

2.
李杰  张晓青  贾豫东 《应用光学》2017,38(4):679-684
光纤干涉光谱仪由于其体积小、分辨率高、抗电磁干扰和耐高温的特点,广泛应用于各种领域的物质检测中。设计了一种使用电动光纤延迟线实现光程差调制的基于Mach-Zehnder光纤干涉仪的光谱测量系统。介绍了系统的构成,推导了基于该系统的光谱计算公式以及分辨率计算公式。搭建了实验平台,对一宽谱光源进行测试,并采集其干涉信号,解调出了相应的光谱图。对结果进行分析,当最大光程差变为0.479 5 cm时,光谱分辨率为2.085 4 cm-1。电动光纤延迟线的性能在很大程度上决定了最终解调出的光谱的分辨率、精度,尤其是速度和延时时间的精度和线性度。  相似文献   

3.
We report on slow light propagation induced by the coherent population oscillation in an erbium-doped optical fiber (EDOF). The slowdown of group velocity of light is demonstrated in a solid-state material at room temperature. We observe a maximum fractional delay of 0.129 and a maximum delay of 8.75 ms corresponding to a group velocity as low as 228.57 m/s in a sinusoid-like modulated waveform. We study in details the influences of the erbium ion density and the length of fiber on the fractional delay and the slow light propagation. The data show that the fractional delay can be increased using the fiber with high erbium ions density or long interaction length.  相似文献   

4.
An optical fiber curvature sensor based on interference between LP01–LP02 modes of a circularly symmetric few mode fiber (FMF) is presented. The device consists of two single-mode fiber and a 10-cm FMF. The two single-mode fiber is offset-spliced to each end of the FMF. When the optical fiber is kept straight and fixed, the interference pattern appears in the transmitted spectrum. As the fiber device is bent, the visibility of the interference fringes (at 1530 nm) decreases, reaching values close to 0.3. The dynamic range of the device can be tailored by the proper selection of the length of FMF. The relationship between the fringe visibility and the curvature is linear while the curvature is between 11 m−1 and 16 m−1. The result indicates that the compact sensor can be used in the measurement of large curvature, which is also important in structural health monitoring.  相似文献   

5.
A method based on data dependent system (DDS) for extraction of phase in fiber modal interference is presented. The interference patterns of LP01 & LP11, LP01 & LP02 and LP06 &LP07 within the fiber have been recorded under different launching conditions. The patterns were characterized by means of autoregressive model and the self coherence functions of the corresponding interferogram were determined. It would provide the phase distribution of the pattern and the modulation of group delay due to the measurand. An application has been made for measuring strain in a simply supported beam under different loading conditions. Results are presented for the applied strain in the range of 270-1500 μ strain.  相似文献   

6.
New type of optically controllable variable fiber optical attenuator based on thermo-optical effect in liquid cladding of optical fiber is described. The thermo-optical effect in liquid cladding optical fiber causes refractive index contrast changes in core–cladding interface, what enables to change the propagating optical signal power with temperature. The temperature change is achieved by fiber based heating element using laser radiation. Attenuation up to −12 dB was achieved in static dependence and dynamic response confirmed rise time up to 24 ms.  相似文献   

7.
We propose a novel method theoretically to generate the slow and fast light with large bandwidth and low gains, which is based on the parametric process in fiber. In our scheme, the wide band fiber optical parametric amplifier is employed and the whole signal bandwidth should be located at a certain frequency range of the band-edge of gain spectrum, and then signal waves will be delayed or advanced with low signal gains because of the peculiar feature of signal gain and phase shift. By changing the pump power, the delay time is continuously-tunable optically. The ultimate delay bandwidth and the delay bandwidth product are constrained by the shape of time delay spectrum. Our simulation verifies that 22.4 ps delay or advanced time for the bandwidth of 10 GHz with little distortion can be obtained at certain wavelengths in the optical communication waveband, and their gains are nearly zero. The tunable range is from 0 ps to 22.4 ps for the signal bandwidth of 10 GHz, and it is from 0 ps to 15.6 ps for the bandwidth of 15 GHz. This type of slow and fast light in wide band FOPA has the potential capability to produce the tunable slow and fast light for large bandwidth with low signal gains in future.  相似文献   

8.
A novel method of a filterless optical millimeter-wave (MMW) signal generation with frequency octupling via a nested multimode interference (MMI) coupler is proposed for Radio-over-fiber systems. By setting the DC bias voltage applied to the central arms of MMI-b and MMI-c accurately, the optical carrier can be completely suppressed. The OSSR can be as high as about 58 dB without optical filter and the radio frequency spurious suppression ratio (RFSSR) exceeds 32 dB, which is the best result as we know. Simulation results suggest that when the generated optical mm-wave signal is transmitted along the standard single-mode fiber, the eye diagram is still opened after being transmitted over a 50 km fiber.  相似文献   

9.
An optical fiber glass containing PbSe quantum dots   总被引:1,自引:0,他引:1  
An optical fiber material, sodium-aluminum-borosilicate glass doped with PbSe quantum dots (QDs) is synthesized by a high-temperature melting method. Crystallization, size distribution and absorption-photoluminescence (PL) of this material are observed by XRD, TEM, and spectrometer respectively. The obtained results indicate that the glass contains QDs in diameter of 6-13 nm depending on the heat-treatment temperature and with a higher doped concentration than those available. It shows an enhanced PL, widened FWHM (275-808 nm), obvious Stokes shift (20-110 nm), with the PL peak wavelength located within 1676-2757 nm depending on the size of QD. The glass is fabricated into an optical fiber in diameter of 10-70 μm and length of 1 m, with pliability and ductility similar to usual SiO2 fibers. It can be easily fused and spliced with SiO2 fibers due to a small difference of melting point between them. Characterized by high doped concentration and broad FWHM, this study suggests that the glass can be applied to designing novel broadband fiber amplifiers working in C-L waveband.  相似文献   

10.
In this paper, Turbo Code is proposed in optical OFDM multimode fiber communication system in order to decrease the bit error rate (BER) of the system, which is mainly affected by the deep nulls of the magnitude response of multimode fiber in the high frequency region (above 3 dB). A simulation system in SIMULINK is established. Based on the system, the BER of the system with Turbo Code is compare to the systems with another two typical coding schemes including convolutional code (CC) and serially concatenated code (SCC) which uses a concatenation of convolutional and RS codes when transmitting 10 Gbps data over various length multimode fibers. Different transmitting rate is also considered. The results show that Turbo coded system has a lower BER than the other two systems and the Turbo coded system can transmit 10 Gbps data to the distance of 300 m with BER below 1e−6.  相似文献   

11.
为分析光纤制导导弹飞行中光纤信道变化情况,满足导弹动静态仿真需求,设计了一种能够模拟光纤数据链路传输损耗特性的装置。研究内容包括建立系统传输损耗的动态、静态模型。利用光模拟器实现导弹飞行中可能遇到的信道干扰、数据延迟、动态损耗等情况。实验结果表明,光信号干扰的变化范围达到-50 dBm~-40 dBm,光信号的传输延迟范围为16.65 s~99.9 s,模拟器动态损耗调整范围为0 dBm~50 dBm,可用于验证导弹光纤传输系统的性能。  相似文献   

12.
Manjit Singh  R.S. Kaler 《Optik》2008,119(8):359-364
We have investigated the return-to-zero (RZ) pulse duty cycle for single-channel Standard Single mode fiber (SSMF), Non Zero Dispersion shifted fibers (normal NZDSF and anomalous NZDSF fiber) for 10 Gbps optical fiber communication system. We give a comprehensive look on the behavior of variable duty cycle optical RZ pulse indicating that lowest bit error rate for duty cycle 0.8 among the duty cycle values 0.2, 0.4, 0.6 and 0.8 investigated for the case of SSMF. The single repeaterless mode fiber length is increased from existing 55 km at duty cycle 0.2 to fiber length 85 km by keeping duty cycle at 0.8. The result is also emphasized through the 10 dB Q value improvement and corresponding improvement in average eye opening diagram. The normal NZDSF show similar improvement but at greater fiber length, it offers BER 10−9 at length 110 km with duty cycle 0.2. NZDSF operating length can further be increased to length 160 km by keeping duty cycle 0.8. The corresponding 8 dB Q value improvement and Average eye opening improvement also supports the result through its graphical variation. Thirdly Anomalous NZDSF for same optical communication system showed that 0.2 duty cycle value give operational length of 130 km which could be extended to 160 km if 0.8 duty cycle is kept. The corresponding 8 dB Q value improvement, average eye-opening improvement endorsed the fact in the graphs.  相似文献   

13.
To the best of our knowledge, proposed is the first variable fiber optical attenuator (VFOA) using an electronically controlled variable focus liquid lens. The approach uses the changes in the radius of curvature of the liquid lens edge to enable an electronically controlled optical wedge that produces a varying beam tilt angle. In effect, changing beam tilt within a single mode fiber (SMF) lens free space coupling assembly leads to a polarization independent broadband VFOA design. The demonstrated VFOA experiment shows broadband operation over the 1530-1560 nm C-Band with a 40 dB dynamic range, <0.5 dB resolution, 0.3 dB polarization dependant loss, 4.3 dB fiber-to-fiber optical loss, 3 dB optical bandwidth from 1510 nm to 1700 nm, and switching time of <100 ms. Applications for this VFOA include use in hand held test and measurement equipment.  相似文献   

14.
A double tapered optical fiber sensor based on evanescent field-effect and surface modification technology was introduced in this work. Whether the liquid and gas molecules had polarities or not, they all could be detected by the sensors modified in different silane coupling agents. At the same time, the sensing characters of the single mode optical fiber with three different tapering lengths were researched, and it came to a conclusion that the optical fiber sensor had stronger evanescent field effect and higher sensitivity when length of tapered fiber was 30 mm. The functionalized tapered fibers modified by 3-aminopropyltrimethoxy silane (APTES) or 3-methylpropenylacyloxy propyltrimethoxy silane (MPAPTES), were employed to detect the polar or nonpolar molecules which had corresponding features. Further, the results of quantitative tests showed that the fiber optic sensor was sensitive to the change of the ethanol concentration and the characteristic peaks of the absorption power spectra could reach to 3–5 dB.  相似文献   

15.
Manoj Kumar  T.S. Kamal 《Optik》2009,120(2):93-96
In this paper, the results of numerical analysis are demonstrated for sech pulse (soliton) propagation in a birefringent optical fiber using computer modeling and simulation. Here, the initial pulse is polarized linearly and guided into the fiber at an angle of 45° to its polarization axes. The birefringence-induced time delay of 200 and 440 ps between X and Y polarization components has been reported at a fiber length of 631.72 km (10 soliton periods) by considering linear and nonlinear regimes, respectively. The Kerr nonlinearity, which stabilizes solitons against spreading due to GVD, also stabilizes them against splitting due to birefringence. A similar fact is true for the birefringent walk-off. Above a certain soliton order (Nth), the evolution scenario is qualitatively different and two orthogonally polarized components of the soliton move with a common group velocity despite their different modal indices or polarization mode dispersion (PMD) at a fiber length of 631.72 km (10 soliton periods) and 1264.344 km (20 soliton periods) over a nonlinear regime at θ≠45°. The physical effect responsible for this type of behavior is the cross-phase modulation (XPM) between the two polarization components.  相似文献   

16.
An optical receiver with automatic-gain-control transimpedance amplifier, linear post amplifier and linear line driver suitable for multilevel signals is presented. A large-diameter photodiode (400 μm) with an antireflection coating optimized for red light was integrated. These features enable the presented optical receiver to be a promising plastic optical fiber receiver. An error free (<10−8) 400 Mbit/s data rate over 50 m PMMA-step index plastic optical fiber (1 mm diameter) is achieved with eight-level pulse amplitude modulation (8-PAM).  相似文献   

17.
D. Liu  N.Q. Ngo  D. Liu 《Optics Communications》2009,282(8):1598-5360
We experimentally demonstrated a new structure of a multiwavelength semiconductor optical amplifier (SOA) ring laser based on a fiber Sagnac loop filter that can generate up to 25 stable output lasing wavelengths at room temperature. By varying the length of a polarization-maintaining (PM) fiber within the Sagnac loop filter, the wavelength spacing between the output lasing wavelengths can be changed to a desired value. By tuning a polarization controller (PC) within the Sagnac loop filter, stable multiwavelength 1550-nm operation with up to 17 lasing lines within 3 dB power level variation and with a wavelength spacing of ∼0.8 nm was achieved. The optical signal-to-noise ratios (OSNRs) of all the lasing wavelengths are greater than 40 dB.  相似文献   

18.
A multiwavelength fiber ring laser that is based on an S-band erbium-doped fiber amplifier (EDFA) and a semiconductor optical amplifier (SOA) is developed. An optical switch is used to switch the multiwavelength fiber laser between S-band and L-band. This fiber laser can stably lase seven wavelengths in the S-band or 28 wavelengths in the L-band. Additionally, the lasing wavelengths with a signal-to-noise ratio of over 33 dB and a wavelength spacing of 100 GHz are demonstrated experimentally. The average powers of the lasing wavelength in the S-band and the L-band are −7.53 and −12.15 dBm, respectively.  相似文献   

19.
To control the phase noise of two ytterbium fiber amplifiers, a coherent combination system based on an active segmented mirror (ASM) has been established in our laboratory. The ASM is controlled by a feed back control loop on the basis of a Peak Rate (PR) algorithm which is realized on a DSP + FPGA hardware control board. Experimental results indicate that when the control loop is off, the far-field interference pattern is blurred and dynamic, while when it is on, the far-field beams interference pattern achieves clear and stable. At two different output powers, the contrasts of the interference stripes are improved from 7% to 19% and 8% to 28% respectively.  相似文献   

20.
We experimentally investigate the gain saturation effect of a piece of 8 m long Erbium doped fiber (EDF), we introduce a theoretical model for the EDF ring loop, and our simulation results show very good cross-gain modulation (XGM) and wavelength conversion. We also experimentally investigate the XGM in an EDF ring loop system. Based on the study of the XGM in the EDF ring loop system, a wavelength conversion is designed with the EDF ring loop system. The EDF ring loop systems as a wavelength conversion is experimentally demonstrated by converting a sinusoidal modulated optical signal at wavelength of 1551 nm to an optical signal at wavelength of 1553.3 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号