首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sputtering process of fused silica bombarded by Ar ion beam is simulated with the SRIM software. The effects of ion beam energy and incident angle on sputtering yield and surface damage are computed. Since ion beam sputtering will result in defects in fused silica, such as E′ color centers and other lattice defects and probably Argon bubbles, the optimized sputtering energy is selected below 1 keV so that the projected range of Ar ions is less than 10 Å. The experimental results show that the scratches in subsurface of fused silica can be smoothed obviously and better surface can be obtained as the optimized parameters are used for ion beam sputtering. The laser induced damage threshold of fused silica increases by about 18% after ion beam sputtering.  相似文献   

2.
In this work we have studied pure and thulium- and chromium-doped ZBLAN glasses irradiated by ultra-short laser pulses. A Ti:sapphire CPA system was used, producing a 500 Hz train of pulses, centered at 830 nm, with 375 μJ of energy and 50 fs of duration (FWHM). The beam was focused by a 20 mm lens, producing a converging beam with a waist of 12 μm. The absorption spectra before and after laser irradiation were obtained showing production of color centers in pure, thulium-doped and chromium-doped ZBLAN glasses. A damage threshold of 9.56 T W/cm2 was determined for ZBLAN.  相似文献   

3.
The effect of fluence level on the discoloration of marble surfaces after the removal of the encrustation by 355 nm laser pulses is comparatively studied. Considering the thermochemical reaction possibly occurring in the encrustation during laser irradiation, the mechanism responsible for the discoloration of the cleaned marble surface is analyzed. The reduction of iron oxides by graphite plays a key role in determining the final color of the cleaned marble surface. A two-dimensional laser ablative cleaning model including the reaction heat is applied to calculate the temperature distribution during laser heating. The kinetics of the thermochemical reaction is estimated based on the simulated temperature field. The occurrence of the thermochemical reaction is also verified indirectly with experiments. The marble surfaces before and after laser irradiation are characterized in terms of the chemical components through surface enhanced Raman spectroscopy. The surface color is measured with a chromameter using a 1976 CIE L*a*b* color system. The proposed mechanism is also applied to numerically analyze the severe discoloration of marble cleaned with laser pulses at 1064 nm.  相似文献   

4.
Single- and multi-shot ablation thresholds of gold films in the thickness range of 31-1400 nm were determined employing a Ti:sapphire laser delivering pulses of 28 fs duration, 793 nm center wavelength at 1 kHz repetition rate. The gold layers were deposited on BK7 glass by an electron beam evaporation process and characterized by atomic force microscopy and ellipsometry. A linear dependence of the ablation threshold fluence Fth on the layer thickness d was found for d ≤ 180 nm. If a film thickness of about 180 nm was reached, the damage threshold remained constant at its bulk value. For different numbers of pulses per spot (N-on-1), bulk damage thresholds of ∼0.7 J cm−2 (1-on-1), 0.5 J cm−2 (10-on-1), 0.4 J cm−2 (100-on-1), 0.25 J cm−2 (1000-on-1), and 0.2 J cm−2 (10000-on-1) were obtained experimentally indicating an incubation behavior. A characteristic layer thickness of Lc ≈ 180 nm can be defined which is a measure for the heat penetration depth within the electron gas before electron-phonon relaxation occurs. Lc is by more than an order of magnitude larger than the optical absorption length of α−1 ≈ 12 nm at 793 nm wavelength.  相似文献   

5.
Optical multimode fibers are applied in materials processing (e.g. automotive industry), defense, aviation technology, medicine and biotechnology. One challenging task concerning the production of multimode fibers is the enhancement of laser-induced damage thresholds. A higher damage threshold enables a higher transmitted average power at a given fiber diameter or the same power inside a thinner fiber to obtain smaller focus spots.In principle, different material parameters affect the damage threshold. Besides the quality of the preform bulk material itself, the drawing process during the production of the fiber and the preparation of the fiber end surfaces influence the resistance. Therefore, the change of the laser-induced damage threshold of preform materials was investigated in dependence on a varying thermal treatment and preparation procedure.Single and multi-pulse laser-induced damage thresholds of preforms (F300, Heraeus) were measured using a Q-switched Nd:YAG laser at 1064 nm wavelength emitting pulses with a duration of 15 ns, a pulse energy of 12 mJ and a repetition rate of 10 Hz. The temporal and spatial shape of the laser pulses were controlled accurately.Laser-induced damage thresholds in a range from 150 J cm−2 to 350 J cm−2 were determined depending on the number of pulses applied to the same spot, the thermal history and the polishing quality of the samples, respectively.  相似文献   

6.
The influence of pulse duration on the laser-induced damage in undoped or infrared-absorbing-dye doped thin triazenepolymer films on glass substrates has been investigated for single, near-infrared (800 nm) Ti:sapphire laser pulses with durations ranging from 130 fs up to 540 fs and complementarily for infrared (1064 nm) Nd:YAG ns-laser single-pulse irradiation. The triazenepolymer material has been developed for high resolution ablation with irradiation at 308 nm. Post-irradiation optical microscopy observations have been used to determine quantitatively the threshold fluence for permanent laser damage. In contrast to our previous studies on a triazenepolymer with different composition [J. Bonse, S.M. Wiggins, J. Solis, T. Lippert, Appl. Surf. Sci. 247 (2005) 440], a significant dependence of the damage threshold on the pulse duration is found in the sub-picosecond regime with values ranging from ∼500 mJ/cm2 (130 fs) up to ∼1500 mJ/cm2 (540 fs). Other parameters such as the film thickness (50 nm and 1.1 μm samples) or the doping level show no significant influence on the material behavior upon irradiation. The results for fs- and ns-laser pulse irradiation are compared and analyzed in terms of existent ablation models.  相似文献   

7.
The electronic structures of BaWO4 crystals containing F-type color centers are studied within the framework of the fully relativistic self-consistent Dirac-Slater theory, using a numerically discrete variational (DV-Xα) method. It is concluded that F and F+ color centers have donor energy level in the forbidden band. The optical transition energies are 2.449 and 3.101 eV, which correspond to the 507 and 400 nm absorption bands, respectively. It is predicted that 400-550 nm absorption bands originate from the F and F+ color centers in BaWO4 crystals.  相似文献   

8.
Properties of the color and emission centers induced with an electron pulse beam at temperature within 80-300 K have been studied in CsI(Tl) crystals. It has been established by optical spectrometry with time resolution that initial color centers in this crystal are only Tl0 and Vk centers, which spontaneously recombine emitting visible light at 2.25 and 2.55 eV. It has been shown that the emission decay kinetics at 80 K include two fast exponential components with decay constants 3 and 14 μs as well as slow hyperbolic component with the power index depending on the wavelength of the emitting light. The temperature effect on the emission kinetics has been studied and it has been directly proved that the emission rise stage at the temperature above 170 K is caused by the recombination of electrons, which are thermally released from single Tl0 centers, with VkA centers. The origin of scintillations in CsI(Tl) crystal is discussed in terms of the tunnel electron transitions from ground state of Tl0 centers to ground state of Vk centers at different distances from each other.  相似文献   

9.
HfO2 is one of the most important high refractive index materials for depositing high power optical mirrors. In this research, HfO2 thin films were prepared by dual-ion beam reactive sputtering method, and the laser-induced damage thresholds (LIDT) of the sample were measured in 1-on-1 mode for laser with 1064 nm wavelength. The results indicate that the LIDT of the as-grown sample is only 3.96 J/cm2, but it is increased to 8.98 J/cm2 after annealing under temperature of 200 °C in atmosphere. By measuring the laser weak absorption and SIMS of the samples, we deduced that substoichiometer is the main reason for the low LIDT of the as-grown sample, and the experiment results were well explained with the theory of electronic-avalanche ionization.  相似文献   

10.
Ta2O5 films were deposited on BK7 substrates by e-beam evaporation with different deposition parameters such as substrate temperature (323-623 K), oxygen pressure (0.5-3.0×10−2 Pa) and deposition rate (0.2-0.5 nm/s). Absorption, scattering and chemical composition were investigated by surface thermal lensing (STL) technique, total integrated scattering (TIS) measurement and X-ray photoelectron spectroscopy (XPS), respectively. The laser-induced damage threshold (LIDT) was assessed using pulsed Nd:YAG 1064 nm laser at a pulse length of 12 ns. The results showed that optical properties, absorption and LIDT were influenced by the deposition parameters and annealing. However, scattering was little correlated with the deposition parameters. On the whole, the LIDT increased with increasing substrate temperature and oxygen pressure, whereas it increased firstly and then decreased upon increasing deposition rate. After annealing at 673 K for 12 h, the LIDT of films improved significantly. The dependence of possible damage mechanism on deposition parameters was discussed.  相似文献   

11.
TiO2 film of around 850 nm in thickness was deposited on a soda-lime glass by PVD sputtering and irradiated using one pulse of krypton-fluorine (KrF) excimer laser (wavelength of 248 nm and pulse duration of 25 ns) with varying fluence. The color of the irradiated area became darker with increasing laser fluence. Irradiated surfaces were characterized using optical microscopy, scanning electron microscopy, Raman spectroscopy and atomic force microscopy. Surface undergoes thermal annealing at low laser fluence of 400 and 590 mJ/cm2. Microcracks at medium laser fluence of 1000 mJ/cm2 are attributed to surface melting and solidification. Hydrodynamic ablation is proposed to explain the formation of micropores and networks at higher laser fluence of 1100 and 1200 mJ/cm2. The darkening effect is explained in terms of trapping of light in the surface defects formed rather than anatase to rutile phase transformation as reported by others. Controlled darkening of TiO2 film might be used for adjustable filters.  相似文献   

12.
The electronic structures of PbWO4 crystals containing F type color centers with the lattice structure optimized are studied within the framework of the fully relativistic self-consistent Direc–Slater theory, using a numerically discrete variational (DV-Xα) method. The calculated results show that F and F+ centers have donor energy level in forbidden band. Their optical transition energy are 1.84 eV, 2.21 eV, respectively, which corresponds to the 680 nm, 550 nm absorption bands. It predicts that the 680 nm, 550 nm absorption bands originate form the F and F+ centers in PbWO4 crystals.  相似文献   

13.
Interaction of an Nd:YAG laser, operating at 1064 or 532 nm wavelength and pulse duration of 40 ps, with titanium implant was studied. Surface damage thresholds were estimated to 0.9 and 0.6 J/cm2 at wavelengths 1064 and 532 nm, respectively. The titanium implant surface modification was studied by the laser beam of energy density of 4.0 and 23.8 J/cm2 (at 1064 nm) and 13.6 J/cm2 (at 532 nm). The energy absorbed from the Nd:YAG laser beam is partially converted to thermal energy, which generates a series of effects, such as melting, vaporization of the molten material, shock waves, etc. The following titanium/implant surface morphological changes were observed: (i) both laser wavelengths cause damage of the titanium in the central zone of the irradiated area, (ii) appearance of a hydrodynamic feature in the form of resolidified droplets of the material in the surrounding outer zone with the 1064 nm laser wavelength and (iii) appearance of wave-like microstructures with the 532 nm wavelength. Generally, both laser wavelengths and the corresponding laser energy densities can efficiently enhance the titanium/implant roughness. This implant roughness is expected to improve its bio-integration. The process of the laser interaction with titanium implant was accompanied by formation of plasma.  相似文献   

14.
Interaction of Nd:YAG laser, operating at 1064 or 532 nm wavelength and a pulse duration of 40 ps, with AISI 1045 steel was studied. Surface damage thresholds were estimated to be 0.30 and 0.16 J/cm2 at the wavelengths of 1064 and 532 nm, respectively. The steel surface modification was studied at the laser energy density of 10.3 J/cm2 (at 1064 nm) and 5.4 J/cm2 (at 532 nm). The energy absorbed from Nd:YAG laser beam is partially converted to thermal energy, which generates a series of effects, such as melting, vaporization of the molten material, shock waves, etc. The following AISI 1045 steel surface morphological changes and processes were observed: (i) both laser wavelengths cause damage of the steel in the central zone of irradiated area; (ii) appearance of a hydrodynamic feature in the form of resolidified droplets of the material in the surrounding outer zone with 1064 nm laser wavelength; (iii) appearance of periodic surface structures, at micro- and nano-level, with the 532 nm wavelength and, (iv) development of plasma in front of the target. Generally, interaction of laser beam with the AISI 1045 steel (at 1064 and 532 nm) results in a near-instantaneous creation of damage, meaning that large steel surfaces can be processed in short time.  相似文献   

15.
Nanocrystalline PZT thick films (1 mm square and over 10 μm thick) directly deposited onto stainless-steel substrates (PZT/SUS) by aerosol deposition (AD) technique and then annealed using focused laser beam with a fiber laser to suppress thermal damage to the back sides of the PZT/SUS and substrate near the film edge and to retain the dielectric and/or ferroelectric properties of the PZT/SUS. Compared with CO2 laser annealing, fiber laser annealing suppressed thermal damage to the substrate. Compared with PZT/SUS annealed at 600 °C using an electric furnace, PZT/SUS annealed at 600 °C using a fiber laser showed superior properties, namely, dielectric constant ? > 1200 at a frequency of 100 Hz, remanent polarization Pr > 30 μC/cm2, and coercive field strength Ec < 50 kV/cm at a frequency of 10 Hz. Furthermore, the grain growth for the PZT/SUS formed by AD technique and annealed by fiber laser irradiation was occurred within the laser spot size.  相似文献   

16.
Laser-induced damage in silicon-on-insulator (SOI) material is investigated with 1064 nm laser pulses. As the laser pulse duration is increased from 190 ps to 1.14 s, the damage threshold of SOI material decreases from 1.3×1010 to 7.7×103 W/cm2 in laser flux. It is found that the damage threshold varies inversely as the pulse duration for a short irradiation time, and is independent of pulse duration for a long irradiation time. The time dependence is in good agreement with a thermal model which well describes the thermal-induced damage in a semi-finite material irradiated by a Gaussian laser beam. The values of absorption coefficient and thermal conductivity under laser irradiation are calculated as 1.1×103 cm?1 and 0.18 Wcm?1 K?1, respectively, by fitting the model to the experimental results. These results on material damage can be used to predict the damage thresholds of SOI-based devices.  相似文献   

17.
We use the third harmonics of Nd:YAG laser (λ = 355 nm) for simultaneous precursor conversion and dopant activation on sol-gel ITO thin films at a laser fluence range of 700-1000 mJ/cm2. A minimum resistivity of 5.37 × 10−2 Ω-cm with a corresponding carrier concentration of 6 × 1019 cm−3 is achieved at laser irradiation fluence of 900 mJ/cm2. X-ray photoelectron analysis reveals that extremely high tin concentration of 19.4 at.% and above is presented in the laser-cured ITO thin films compared with 8.7 at.% in the 500 °C thermally cured counterpart. These excess tin-ions form complex defects, which contribute no free carriers but act as scattering centers, causing inferior electrical properties of the laser-cured films in comparison with the thermally cured ones.  相似文献   

18.
X. Wang 《Applied Surface Science》2010,257(5):1583-1588
The surface damage morphologies of single crystal silicon induced by 1064 nm millisecond Nd:YAG laser are investigated. After irradiation, the damage morphologies of silicon are inspected by optical microscope (OM) and atomic force microscope (AFM). The plasma emission spectra of the damaged region are detected by the spectrometer. It is shown that surface oxidation and nitridation have occurred during the interaction of millisecond laser with silicon. In addition, the damage morphologies induced by 2 ms and 10 ns pulse width laser are compared. The damage morphology obtained by 2 ms laser is an evident crater. Three types of damage morphologies are formed at different laser energy densities. The circular concentric ripples are found surrounding the rim of the crater. The spacing of the ripples is 15 ± 5 μm. Two types of cracks are observed: linear crack and circular crack. The linear crack is observed in the center of the damaged region which propagates to the periphery of the damaged region. The circular crack is located at the rim of the crater. The damage morphology induced by 10 ns laser is surface layer damage. The periodic linear waves are generated due to the interference between the incident beam and the scattered beam. The spacing of the ripples is 1.54 μm which is close to the incident laser wavelength 1.064 μm. The linear crack is located at the center of the damaged region. Furthermore, for the same laser energy density, the dimension of the damaged region and the crater depth induced by 2 ms laser are greater than that of 10 ns laser. It indicates that the damage mechanism under millisecond pulse laser irradiation is strongly different from the case of nanosecond pulse laser.  相似文献   

19.
高重复频率激光脉冲作用下KTP晶体中的灰迹   总被引:1,自引:1,他引:0       下载免费PDF全文
采用波长为1 064 nm/532 nm、脉宽6 ns(FWHM)的高重复频率调Q激光,研究了磷酸氧钛钾(KTP)晶体中灰迹的产生机理,以及色心密度对灰迹的影响。晶体透过率表征了色心密度,根据透过率与色心密度的关系以及色心密度对灰迹产生的决定作用,定义临界灰迹密度,当晶体透过率高于此值时可安全运行,而低于此值时,为避免晶体发生灾难性损伤应立即停止运行。实验结果表明:灰迹不仅大量吸收紫外及可见光能量,而且大量吸收近红外波段能量,这为灰迹的在线监测提供了一种监测方法。  相似文献   

20.
Comprehensive and systematic optical activation studies of Si-implanted GaN grown on sapphire substrates have been made as a function of ion dose and anneal temperature. Silicon ions were implanted at 200 keV with doses ranging from 1×1013 to 5×1015 cm−2 at room temperature. The samples were proximity cap annealed from 1250 to 1350 °C with a 500-Å-thick AlN cap in a nitrogen environment. The results of photoluminescence measurements made at 3 K show a very sharp neutral-donor-bound exciton peak along with a sharp donor-acceptor pair peak after annealing at 1350 °C for 20 s, indicating excellent implantation damage recovery. The results also indicate the AlN cap protected the implanted GaN layer very well during high temperature annealing without creating any significant anneal-induced damage. This observation is consistent with the electrical activation results for these samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号