首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Plots of the electric fields in the different sections of multilayered coaxial omniguiding Bragg fibers are presented. Investigations are made for the different dimensional values of the fiber, and a comparative study is made. It is found that the fields match very smoothly at the layer interfaces, and decay with the increase in radial distance. Particularly, field patterns are best matched in the case of large core Bragg fibers. For illustration, plots of power are also presented for two-layer and four-layer (core-clad) sections of the fiber. Power peaks are observed in both the types of fiber sections, and in this case also, it is observed that the power patterns match smoothly at the layer boundaries. Smooth match of fields as well as power patterns justifies the validity of the analytical procedure that implements the theory of Bloch formulation in omniguiding fibers.  相似文献   

3.
S.C. Yeow  M.H. Lim  P.K. Choudhury   《Optik》2006,117(9):405-410
An analytical investigation is presented of the propagation of power in a step-index plastic clad tapered optical fiber operating in the infrared region of the electromagnetic (EM) spectrum. The chosen materials are widely used in low cost optical links. It is assumed that the taper section has a linear profile. Following rigorous analytical approach, the general expressions for power in the core and the cladding sections are derived, and a study is presented of the variation of the relative power along the propagation direction in respect of different (meriodinal and skew) lower order modes. It is observed that, in general, the confinement of power is fairly high in the core section, and the confinement increases with the increase in the taper length and/or mode index. In the cladding region, the confinement decreases for higher taper lengths.  相似文献   

4.
A method based on controlled air hole collapse for low-loss fusion splicing small-core photonic crystal fibers (PCFs) and single-mode fibers (SMFs) was demonstrated. A taper rig was used to control air hole collapse accurately to enlarge the MFDs of PCFs which was then spliced with SMFs using a fusion splicer. An optimum mode field match at the interface of PCF-SMF was achieved and a low-loss with 0.64 dB was obtained from 3.57 dB for a PCF with 4 μm MFD and a SMF with 10.4 μm MFD experimentally.  相似文献   

5.
We have analyzed the thermal influence on the bandgap properties of liquid-crystal photonic crystal fibers. The bandgap parameters which affect the transmission conditions have been investigated. It is observed that the photonic bandgap can be thermally tuned, i.e. the red or blue shift of the bandgap results from the temperature dependence of the refractive index of the liquid crystal. For the planar alignment of liquid-crystal filled cladding, the ordinary refractive index plays a major role in determining the bandgap properties; the extraordinary refractive index comes into influence while the ordinary refractive index is relatively constant of temperature. The analyses agree well with the experiments results.  相似文献   

6.
The paper essentially deals with the analysis of photonic band-gap fibers in analogy with the electron wave motion in periodic crystal lattice. As such, the analyses are based on Bloch formulation. The dispersion characteristics of such fibers are presented by considering some illustrative values of design parameters. The effect of design parameters on the dispersion characteristics is also presented in terms of the variation of widths of allowed and forbidden bands of band-gap fibers. It is found that the number of allowed bands increases with the increase in difference between refractive indices of different layers. Further, widths of the allowed and forbidden bands increase with the increase in layer thickness.  相似文献   

7.
A theoretical study of nematic liquid crystal filled photonic crystal fibers (LCPCFs) is presented. Detailed investigations including the polarization dependent bandgap formation and the modal properties are given for LCPCFs, in which alignment of the molecules could be controlled by external static electric field. The polarization dependent bandgap splitting caused by the high index difference between the ordinary and the extraordinary dielectric index of nematic liquid crystals provides the possibility of single-mode single-polarization guiding. A polarization operation diagram is proposed to describe the guiding behavior of LCPCFs. The influence of rotation angle ? of the director of liquid crystals on the modal properties is investigated. It is shown that the polarization axis of the guided mode is determined by the rotation angle ?, which could be controlled by external electric field.  相似文献   

8.
Modified design of photonic crystal fibers with flattened dispersion   总被引:4,自引:1,他引:4  
We present a modified method to design photonic crystal fibers with flattened dispersion characteristics. By replacing the circular air-holes of the first central ring with elliptic air-holes, we observe a more flattened dispersion curve. Plane-wave expansion (PWE) method is used to analyze the dispersion property in a high-index core PCF. The simulation results are presented, and ultra-low and ultra-flattened dispersion curves over wide wavelength range are demonstrated.  相似文献   

9.
Using Maxwell's field equations, an analytical investigation is presented of the relative power distributions in the different sections of a step-index plastic clad annular core optical fiber (ACF) operating in the infrared region of the electromagnetic (EM) spectrum. It is assumed that the fiber cross-section is made of two concentric circles, and the EM waves propagate through the annular region. The chosen fiber materials are widely used in low cost optical links. The wave equations are solved in the different sections of the fiber, and the general expressions for power in the core and the cladding regions are finally deduced. Plots are shown of the variation of fractional power (or the power confinement factor) in all the fiber sections against the propagation constants of sustained modes. The cases of three lowest azimuthal modal indices (i.e. meridional as well as skew modes) are described. It is observed that the confinement of power in the core section is increased for ACFs of larger cross-sectional dimensions. Also, a fairly uniform distribution of power over the sustained modes remains for large sized fibers, and this uniformity is greatly affected in ACFs of smaller dimensions. It is suggested that, because of strong evanescent fields, ACFs can be of potential use in chemical sensing. Apart from this, it is also presumed that these may be useful in the areas of communications. The improved mechanical strength adds the potentiality of ACFs.  相似文献   

10.
In this paper analyses of mode distribution, confinement and experimental losses of the photonic crystal fibers with different core sizes infiltrated with liquid crystal are presented. Four types of fibers are compared: with single-, seven-, nineteen- and thirty seven solid rods forming the core in the same hexagonal lattice of seven “rings” of unit cells (rods or capillaries). The experimental results confirming the influence of the core diameter on light propagation are also included. The diameter of cores determines not only the number of modes in the photonic liquid crystal fiber but also is correlated with experimentally observed attenuation. For fibers with larger cores confinement losses are expected to be higher, but the measured attenuation is smaller because the impact of liquid crystal material losses and scattering is smaller.  相似文献   

11.
We report about fiber Bragg gratings (FBGs) inscribed in two different types of small-core Ge-doped photonic crystal fibers with a UV laser. Sensing properties of the FBGs were systematically investigated by means of demonstrating the responses of Bragg wavelengths to temperature, strain, bending, and transverse-loading. The Bragg wavelength of the FBGs shifts toward longer wavelengths with increasing temperature, tensile strain, and transverse-loading. Moreover, the bending and transverse-loading properties of the FBGs are sensitive to the fiber orientations. The reasonable analyses for these sensing properties also are presented.  相似文献   

12.
In this paper, an extended finite difference time domain (FDTD) algorithm for the full-vectorial analysis of photonic crystal fibers has been derived. For achieving a good convergence and high accuracy, a kind of modified conformal FDTD method has been applied. An anisotropic perfectly matched layer for truncation of boundary conditions has been introduced. Material and chromatic dispersions are numerically investigated for the photonic crystal fibers with different dimensions and geometrical parameters and different dispersion behaviors are exhibited.  相似文献   

13.
The aim of this work was to induce permanent birefringence both in typical liquid crystal cells and photonic crystal fibers (PCFs) by photo-polymerization. For this purpose three different liquid crystalline materials, namely E7, 5CB, and 6CHBT were combined with a mixture of RM257 monomer and a UV sensitive initiator with the percentage weight less than 10%. Due to the photo-polymerization process it was possible to achieve polymer-stabilized liquid crystal orientation inside LC cells and micro-sized cylindrical glass tubes. In particular, periodic change in spatial molecular orientation was achieved by selective photo-polymerization. Successful results obtained in these simple geometries allowed for the experimental procedure to be repeated in PCFs leading to locally-induced permanent birefringence in PCFs.  相似文献   

14.
We present electron microscope (FEI NanoSEM) and atomic force microscopy measurements of surface roughness in nanochannels in photonic crystal fibers (PCF). A method was invented to cleave the PCF along the axis without damaging the surface structure in the nanochannels allowing us to characterize the morphology of the nanochannels in the PCF. A multi-wall carbon nanotube mounted onto commercial AFM probes and super sharp silicon non-contact mode AFM probes were used to characterize the wall roughness in the nanochannels. The roughness is shown to have a Gaussian distribution, and has an amplitude smaller than 0.5 nm. The height–height correlation function is an exponential correlation function with an autocorrelation length of 13 nm, and 27 nm corresponding with scan sizes of 200×100 nm2, and 1600×200 nm2, respectively.  相似文献   

15.
In this paper, polarization properties and propagation characteristics of rectangular lattice photonic crystal fibers with elliptical air-holes are investigated by using the full-vector finite element method with anisotropic perfectly matched layers. Numerical results show that the birefringence of the fiber is induced by asymmetries of the cladding. Moreover, by adjusting its structure parameters, such as the hole pitch Λ, and the air-hole elliptical rate η, we find the optimized design parameters of the fiber with high birefringence (the order of 10−2) and limited polarization mode dispersion, operating in a single mode region at an appropriate wavelength range.  相似文献   

16.
In this paper, a novel double-clad photonic crystal fiber (DC-PCF) is proposed for achieving both high birefringence and low leakage loss. According to numerical simulation of the proposed PCF, the extraordinarily high birefringence (over 2×10−2) and low leakage loss of the order of 0.0001 dB/km over a large wavelength range are achieved simultaneously. Single-polarization single-mode (SPSM) operation with low leakage loss is also discussed and can be realized and optimized in the PCF by adopting suitable structure parameters.  相似文献   

17.
通过加热光子晶体光纤,其包层中空气孔由于表面张力的作用而塌缩减小。理论和实验结果表明,空气孔的塌缩在满足波导的渐变条件下,引入的能量损耗非常小。空气孔的塌缩减小,可以有效地增加光子晶体光纤的模场直径,从而不仅可以提高光耦合的效率和光纤端面的损伤阈值,而且可以降低与其它模场直径不匹配的普通光纤的熔接损耗。  相似文献   

18.
A highly birefringent index-guiding photonic crystal fibers with flattened dispersion and low effective area is proposed by introducing elliptical air holes in the cladding and small holes both in the core area and in the cladding. With the plane wave expansion (PWE) method, the birefringent, dispersion and effective area of the fundamental modes in such photonic crystal fibers are analyzed in detail. The simulation result shows that high birefringence with a magnitude of the order of 10−3, flattened chromatic dispersion from 1100 nm to 1800 nm and low effective area (which mean high nonlinearity) are obtained. Furthermore, the influences on the birefringence and dispersion by geometrical parameters have also been discussed and a modest number of design parameters are given.  相似文献   

19.
Highly birefringent dual-core photonic crystal fibers (PCFs) can be used as a polarization splitter because the orthogonal polarization modes with dissimilar coupling lengths are easily separated from each other. Different from the traditional methods achieving high birefringence, a new highly birefringent hybrid PCF that guides light by both index guiding and bandgap guiding is proposed. Firstly, a novel polarization splitter based on this kind of dual-core hybrid PCF is designed. The transmission modes, coupling lengths for the two orthogonal polarizations and performance of the proposed polarization splitter are investigated and numerically analyzed. The results demonstrate that it is possible to obtain a 4.72-mm-long polarization splitter. The splitting ratio is better than −20 dB in a large wavelength range of 1.53-1.72 μm. Its bandwidth is about 190 nm.  相似文献   

20.
We report on experimental studies of polarimetric sensitivity to hydrostatic pressure and temperature in two highly birefringent index guided photonic crystal fibers, in which birefringence is induced by one row of the cladding holes with diameters smaller than the other cladding holes. The sensitivity measurements were carried out in the spectral range from 0.6 μm to 1.6 μm. Our results show that absolute value of the polarimetric sensitivity to hydrostatic pressure can reach 23 rad/MPa × m, which is almost one order of magnitude higher than in conventional fibers with elliptical core. Simultaneously, polarimetric sensitivity to temperature is at least two orders of magnitude lower than in conventional highly birefringent fibers. Moreover, we proved experimentally that one of the investigated fibers is completely insensitive to temperature at certain wavelength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号