首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photovoltaics is the most promising technology for the future of green energy production. To fully realize the potential use of photovoltaic technology, low manufacturing cost and high working photoconversion efficiency must be obtained. Light trapping by metal nanoparticles is an attractive strategy in thin film as well as in bulk silicon solar cells aimed to confine light within the active layer to promote the photon absorption and therefore achieving higher efficiency. In this paper, we tested the deposition of silver and gold nanoparticles on bulk silicon solar cells by colloidal technique in order to enhance their photovoltaic conversion efficiency by means of Plasmonic Light Scattering by metal nanoparticles. The feasible Plasmonic Light Scattering related enhancement was examined using spectral response and IV measurements. Relative increases of the total delivered power under simulated solar irradiation were observed for cells both with and without antireflection coating using silver and gold nanoparticles.  相似文献   

2.
《Current Applied Physics》2015,15(4):499-503
This study involves the synthesis of gallium nitride (GaN) nanoparticles (NPs) under different low temperatures using a simple chemical method. The nanoparticles are spin coated on Si substrate to fabricate the solar cell. The FESEM images obtained indicate the presence of cubic GaN nanoparticle with average diameter of 50 nm synthesized at 90 °C. The spin coating technique deposited n-GaN NPs/Si(111) produced a heterojunction solar cell with fill factor of 0.56 and conversion efficiency of 2.06%. Based on these results, this study proposes a novel low cost technique for the fabrication of GaN NPs solar cells.  相似文献   

3.
Forward-scattering efficiency (FSE) is first proposed when an Ag nanoparticle serves as the light-trapping structure for thin-film (TF) solar cells because the Ag nanoparticle’s light-trapping efficiency lies on the light-scattering direction of metal nanoparticles.Based on FSE analysis of Ag nanoparticles with radii of 53 and 88 nm,the forward-scattering spectra and light-trapping efficiencies are calculated.The contributions of dipole and quadrupole modes to light-trapping effect are also analyzed quantitatively.When the surface coverage of Ag nanoparticles is 5%,light-trapping efficiencies are 15.5% and 32.3%,respectively,for 53and 88-nm Ag nanoparticles.Results indicate that the plasmon quadrupole mode resonance of Ag nanoparticles could further enhance the light-trapping effect for TF solar cells.  相似文献   

4.
Photoluminescence (PL) conversion of Si nanoparticles by absorbing ultraviolet (UV) lights and emitting visible ones has been used to improve the efficiency of crystalline Si solar cells. Si nanoparticle thin films are prepared by pulverizing porous Si in ethanol and then mixing the suspension with a SiO2 sol-gel (SOG).This SOG is spin-deposited onto the surface of the Si solar cells and dries in air. The short-circuit current as a function of Si nanoparticle concentration is investigated under UV illumination. The maximal increase is found at a Si concentration of 0.1 mg/mL. At such concentration and under the irradiation of an AM0 solar simulator, the photoelectric conversion efficiency of the crystalline Si solar cell is relatively increased by 2.16% because of the PL conversion.  相似文献   

5.
Gold nanoparticles are very attractive for biomedical products. However, there is a serious lack of information concerning the biological activity of nanosized gold in human tissue cells. An influence of nanoparticles on stem cells might lead to unforeseen consequences to organ and tissue functions as long as all cells arising from the initial stem cell might be subsequently damaged. Therefore the effect of negatively charged gold nanoparticles (9 and 95 nm), which are certified as reference material for preclinical biomedical research, on the adipogenic differentiation of human mesenchymal stem cells (hMSCs) is investigated here. Bone marrow hMSCs are chosen as differentiation model since bone marrow hMSCs are well characterized and their differentiation into the adipogenic lineage shows clear and easily detectable differentiation. In this study effects of gold nanoparticles on adipogenic differentiation are analyzed regarding fat storage and mitochondrial activity after different exposure times (4–21 days). Using time lapse microscopy the differentiation progress under chronically gold nanoparticle treatment is continuously investigated. In this preliminary study, chronically treatment of adipogenic differentiating hMSCs with gold nanoparticles resulted in a reduced number and size of lipid vacuoles and reduced mitochondrial activity depending on the applied concentration and the surface charge of the particles.  相似文献   

6.
等离子体增感太阳能电池中,层层自组装金纳米粒子的表面等离子体共振能产生光电电流,金纳米粒子层的光电转换效率随表面等离子体共振强度的提升而增加。等离子体增感太阳能电池初步试验光电转换效能为0.75%。利用模型仿真电荷分离的现象、光电电流的产生,以及表面等离子体共振和光电电流产生之间的关系来解释实验结果。在未来,通过优化等离子体增感太阳能电池组件,可以进一步提升其转换效率。这在表面等离子体激活太阳能电池及等离子体太阳能电池领域将有很大应用潜力。  相似文献   

7.
A non-vacuum process for Cu(In,Ga)Se2 (CIGS) thin film solar cells from nanoparticle precursors was described in this work. CIGS nanoparticle precursors was prepared by a low temperature colloidal route by reacting the starting materials (CuI, InI3, GaI3 and Na2Se) in organic solvents, by which fine CIGS nanoparticles of about 15 nm in diameter were obtained. The nanoparticle precursors were then deposited onto Mo/glass substrate by the doctor blade technique. After heat treating the CIGS/Mo/glass layers in Se gas atmosphere, a complete solar cell structure was fabricated by depositing the other layers including CdS buffer layer, ZnO window layer and Al electrodes by conventional methods. The resultant solar cell showed a conversion efficiency of 0.5%.  相似文献   

8.
Materials with a high atomic number (Z) are shown to cause an increase in the level of cell kill by ionizing radiation when introduced into tumor cells. This study uses in vitro experiments to investigate the differences in radiosensitization between two cell lines (MCF-7 and U87) and three commercially available nanoparticles (gold, gadolinium, and iron oxide) irradiated by 6 MV X-rays. To assess cell survival, clonogenic assays are carried out for all variables considered, with a concentration of 0.5 mg mL−1 for each nanoparticle material used. This study demonstrates differences in cell survival between nanoparticles and cell line. U87 shows the greatest enhancement with gadolinium nanoparticles (2.02 ± 0.36), whereas MCF-7 cells have higher enhancement with gold nanoparticles (1.74 ± 0.08). Mass spectrometry, however, shows highest elemental uptake with iron oxide and U87 cells with 4.95 ± 0.82 pg of iron oxide per cell. A complex relationship between cellular elemental uptake is demonstrated, highlighting an inverse correlation with the enhancement, but a positive relation with DNA damage when comparing the same nanoparticle between the two cell lines.  相似文献   

9.
借助时域有限差分法,对几种常见金属纳米颗粒影响有机太阳能电池光吸收效率的因素及其内部物理机制进行了研究.首先对金属纳米颗粒激发局域表面等离子共振的场分布特点进行分析,对比其在电池不同功能层中对光吸收率的影响;其次基于米氏理论与电共振效应,得出金属纳米颗粒的结构参量对局域表面等离子共振位置及强度的影响规律,并以此进行优化设计.结果表明,具有高对称性形貌的金属纳米颗粒以小尺寸密堆积结构引入电池活性层,能够促进电池光吸收增强三倍以上.  相似文献   

10.
Studies into the cell nucleus' incorporation of gold nanoparticles (AuNPs) are often limited by ambiguities arising from conventional imaging techniques. Indeed, it is suggested that to date there is no unambiguous imaging evidence for such uptake in whole cells, particularly at the single nanoparticle level. This shortcoming in understanding exists despite the nucleus being the most important subcellular compartment in eukaryotes and gold being the most commonly used metal nanoparticle in medical applications. Here, dual‐angle X‐ray flouresence is used to show individually resolved nanoparticles within the cell nucleus, finding them to be well separated and 79% of the intranuclear population to be monodispersed. These findings have important implications for nanomedicine, illustrated here through a specific exemplar of the predicted enhancement of radiation effects arising from the observed AuNPs, finding intranuclear dose enhancements spanning nearly five orders of magnitude.  相似文献   

11.
金属纳米颗粒对有机太阳能电池光吸收效率影响的研究   总被引:1,自引:1,他引:0  
孙晨  李传皓  石瑞英  苏凯  高洪涛  杜春雷 《光子学报》2012,41(11):1335-1341
借助时域有限差分法,对几种常见金属纳米颗粒影响有机太阳能电池光吸收效率的因素及其内部物理机制进行了研究.首先对金属纳米颗粒激发局域表面等离子共振的场分布特点进行分析,对比其在电池不同功能层中对光吸收率的影响;其次基于米氏理论与电共振效应,得出金属纳米颗粒的结构参量对局域表面等离子共振位置及强度的影响规律,并以此进行优化设计.结果表明,具有高对称性形貌的金属纳米颗粒以小尺寸密堆积结构引入电池活性层,能够促进电池光吸收增强三倍以上.  相似文献   

12.
丁东  杨仕娥  陈永生  郜小勇  谷锦华  卢景霄 《物理学报》2015,64(24):248801-248801
利用价格低廉、性能优良的金属纳米颗粒增强太阳电池的光吸收具有广阔的应用前景. 通过建立三维数值模型, 模拟了微晶硅薄膜电池前表面周期性分布的Al纳米颗粒阵列对电池光吸收的影响, 并对其结构参数进行了优化. 模拟结果表明: 对于球状Al纳米颗粒阵列, 影响电池光吸收的关键参数是周期P与半径R的比值, 或者说是颗粒的表面覆盖度; 当P/R=4–5时, 总的光吸收较参考电池提高可达20%. 与球状颗粒相比, 优化后的半球状Al纳米颗粒阵列可获得更好的陷光效果, 但后者对颗粒半径R的变化较敏感. 另外, 结合电场分布, 对电池光吸收增强的物理机理进行了分析.  相似文献   

13.
Enhancing optical and electrical performances is effective in improving power conversion efficiency of photovoltaic devices. Here, gold and silver dual nanoparticles were imported and embedded in the hole transport layer of perovskite solar cells. Due to the cooperative localized surface plasmon resonance of these two kinds of metal nanostructures, light harvest of perovskite material layer and the electrical performance of device were improved, which finally upgraded short circuit current density by 10.0%, and helped to increase power conversion efficiency from 10.4% to 11.6% under AM 1.5G illumination with intensity of 100 m W/cm~2. In addition, we explored the influence of silver and gold nanoparticles on charge carrier generation, dissociation, recombination, and transportation inside perovskite solar cells.  相似文献   

14.
We simulated laser-intensity distribution inside spherical gold and silver nanoparticles with radii between 10 and 100 nm, which are exposed to laser radiation at 400, 532, and 800 nm in air, and analyzed the results. The effect of high energy concentration inside illuminated (front) and shadowed (back) hemispheres of gold and silver nanoparticles is established for several nanoparticle sizes and laser wavelengths. The results can be used in nanophotonics of new plasmon devices (concentrators, antennas, etc.) and photon components.  相似文献   

15.
In cancer hyperthermia, ultrasound is considered as an appropriate source of energy to achieve desired therapeutic levels of heating. It is assumed that such a heating is targeted to cancer cells by using nanoparticles as sonosensitization agents. Here, we report the sonosensitizing effects of Nano-Graphene Oxide (NGO) and compare them with gold nanoparticles (AuNPs), Iron Oxide nanoparticles (IONPs).Experiments were conducted to explore the effects of nanoparticle type and concentration, as well as ultrasound power, on transient heating up of the solutions exposed by 1 MHz ultrasound. Nanoparticles concentration was selected from 0.25 to 2.5 mg/ml and the solutions were exposed by ultrasound powers from 1 to 8 W. Real time temperature monitoring was done by a thermocouple and obtained data was analyzed.Temperature profiles of various nanoparticle solutions showed the higher heating rates, in comparison to water. Heating rise was strongly depended on nanoparticles concentration and ultrasound power. AuNPs showed a superior efficiency in heat generation enhancement in comparison to IONPs and NGO.Our result supports the idea of sonosensitizing capabilities of AuNPs, IONPs, and NGO. Targeted hyperthermia may be achievable by preferential loading of tumor with nanoparticles and subsequent ultrasound irradiation.  相似文献   

16.
Theoretical and experimental results on the heating process of gold nanoparticles irradiated by nanosecond laser pulses are presented. The efficiency of particle heating is demonstrated by in-vitro photothermal therapy of human tumor cells. Gold nanoparticles with diameters of 40 and 100 nm are added as colloid in the cell culture and the samples are irradiated by nanosecond pulses at wavelength of 532 nm delivered by Nd:YAG laser system. The results indicate clear cytotoxic effect of application of nanoparticle as more efficient is the case of using particles with diameter of 100 nm. The theoretical analysis of the heating process of nanoparticle interacting with laser radiation is based on the Mie scattering theory, which is used for calculation of the particle absorption coefficient, and two-dimensional heat diffusion model, which describes the particle and the surrounding medium temperature evolution. Using this model the dependence of the achieved maximal temperature in the particles on the applied laser fluence and time evolution of the particle temperature is obtained.  相似文献   

17.
Biosynthesis of spherical gold nanoparticles and gold nanoplates was achieved at room temperature and pH 2.8 when cell extract from the metal-reducing bacterium Shewanella algae was used as both a reducing and shape-controlling agent. Cell extract, prepared by sonicating a suspension of S. algae cells, was capable of reducing 1 mol/m3 aqueous AuCl4 ions into elemental gold within 10 min when H2 gas was provided as an electron donor. The time interval lapsed since the beginning of the bioreductive reaction was found to be an important factor in controlling the morphology of biogenic gold nanoparticles. After 1 h, there was a large population of well-dispersed, spherical gold nanoparticles with a mean size of 9.6 nm. Gold nanoplates with an edge length of 100 nm appeared after 6 h, and 60% of the total nanoparticle population was due to gold nanoplates with an edge length of 100–200 nm after 24 h. The yield of gold nanoplates prepared with S. algae extract was four times higher than that prepared with resting cells of S. algae. The resulting biogenic gold nanoparticle suspensions showed a large variation in color, ranging from pale pink to purple due to changes in nanoparticle morphology.  相似文献   

18.
韩涛  孟凡英  张松  汪建强  程雪梅 《物理学报》2011,60(2):27303-027303
为增强晶体硅太阳电池的光利用效率,提高光电转换效率,研究了金属银纳米颗粒的光学散射性质.基于银纳米粒子表面等离子激元效应和MIE散射理论,采用Matlab数值计算,理论分析了不同银纳米颗粒尺寸和银粒子分布密度对太阳光谱各波长的散射特性.获得了实现高的光透过率所需最佳银纳米颗粒半径范围,研究发现随着银纳米颗粒半径增加,偶极峰红移、高极峰逐渐出现.定量地给出了最佳颗粒分布密度随银粒子半径的变化规律,建立了计算减反射膜透射率的理论方法,找到了银纳米颗粒光学透过率的简单函数表达式,能为实验研究提供理论指导. 关键词: 银纳米颗粒 透过率 MIE理论 太阳电池  相似文献   

19.
Gold nanoparticles have been available for many years as a research tool in the life sciences due to their electron density and optical properties. New applications are continually being developed, particularly in nanomedicine. One drawback is the need for an easy, real-time quantitation method for gold nanoparticles so that the effects observed in in vitro cell toxicity assays and cell uptake studies can be interpreted quantitatively in terms of nanoparticle loading. One potential method of quantifying gold nanoparticles in real time is by chemisorption of iodine-125, a gamma emitter, to the nanoparticles. This paper revisits the labelling of gold nanoparticles with iodine-125, first described 30 years ago and never fully exploited since. We explore the chemical properties and usefulness in quantifying bio-functionalised gold nanoparticle binding in a quick and simple manner. The gold particles were labelled specifically and quantitatively simply by mixing the two items. The nature of the labelling is chemisorption and is robust, remaining bound over several weeks in a variety of cell culture media. Chemisorption was confirmed as potassium iodide can remove the label whereas sodium chloride and many other buffers had no effect. Particles precoated in polymers or proteins can be labelled just as efficiently allowing for post-labelling experiments in situ rather than using radioactive gold atoms in the production process. We also demonstrate that interparticle exchange of I-125 between different size particles does not appear to take place confirming the affinity of the binding.  相似文献   

20.
The photovoltaic properties of heterojunctions of titanium dioxide (TiO2) nanoparticle films with single crystal silicon (c-Si) substrates with different Fermi level (E f) positions were studied. The TiO2 nanoparticles of rutile and anatase structures were studied without any sintering process. To clarify the photovoltaic properties, the characteristics of the heterojunction solar cells of TiO2 nanoparticle films with p-Si and n-Si substrates were investigated, where several Si substrates with different resistivities were used. The IV characteristics of p-Si/TiO2 heterojunction showed the rectifying behavior and photovoltaic effect. The n-Si/TiO2 heterojunction also showed good rectifying characteristics; however, the conversion efficiency was extremely lower than that of p-Si/TiO2 heterojunction. The conversion efficiencies of various Si/TiO2 (rutile) heterojunction solar cells against the Fermi level E f of c-Si showed the maximum in the p-doped region. The photovoltaic properties of the Si/TiO2 heterojunction also depended on the crystal structure of TiO2, and the conversion efficiency of anatase is higher than that of rutile, which was attributed to the higher carrier mobility of anatase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号