首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A diode pumped Nd:YVO4 semiconductor saturable absorber mirrors (SESAM) passive mode-locked intracavity frequency doubled laser was studied. A type I phase matching LBO frequency doubling crystal was inserted in the cavity. With a pump power of 4.5 W, a 140 mW output of frequency doubled beam was achieved with LBO, while the power of one fundamental frequency beam was 240 mW with repetition rate of 85 MHz, and pulse duration of 5.2 ps.  相似文献   

2.
This paper reported a passively Q-switched green laser of LD pumped linear cavity structure by using Nd:YAG/Cr4+:YAG composite crystal and the type II phase matching KTP crystal. The dependence of average output power, pulse width and pulse repetition rate on pump power at different initial transmissions of Cr4+:YAG were measured and analyzed. With Cr4+:YAG of 80% initial transmission, under pump power of 13.97 W, the output average power is up to 681 mW, with pulse width of 200 ns and pulse repetition rate of 9.1 kHz. The laser operates in a fundamental mode.  相似文献   

3.
We have demonstrated a diode-pumped intra-cavity frequency doubling Nd:LuVO4 laser operating at 916 nm with a Z-folded cavity. A 10-mm long LBO crystal, cut for critical type I phase matching at 912 nm, is used for the experiment. A maximum output power of 330 mW at 458 nm has been achieved at pump power of 22 W. The optical-to-optical conversion efficiency and slope efficiency is 1.5% and 2.3%, respectively. The power instability at the maximum output power in 30 min is better than 3%.  相似文献   

4.
A laser diode end-pumped 10 at.% doped Yb:YAG microchip crystal intracavity frequency doubled all solid-stated green laser is reported in this paper. Using one plano-concave resonator, with the pump power of 1.2 W, 44.2 mW TEM00 continuous wave (CW) laser at 525 nm was obtained, the optical conversion efficiency was about 3.7%. When a Cr:YAG crystal with initial transmission of 95.5% inserted in the resonator, the maximum output power of 6.4 mW, pulse duration width of 49.1 ns, pulse repetition rate of 2.45 kHz, and peak power of 53.1 W at 515 nm were achieved when the pump power was 1.2 W. The wavelength changed from 525 nm to 515 nm and the threshold was only 725 mW.  相似文献   

5.
We reported an actively Q-switched, intracavity Nd3+:YVO4 self-Raman laser at 1176 nm with low threshold and high efficiency. From the extracavity frequency doubling by use of LBO nonlinear crystal, over 3.5 mW, 588 nm yellow laser is achieved. The maximum Raman laser output at is 182 mW with 1.8 W incident pump power. The threshold is only 370 mW at a pulse repetition frequency of 5 kHz. The optical conversion efficiency from incident to the Raman laser is 10%, and 1.9% from Raman laser to the yellow.  相似文献   

6.
A diode-end-pumped simultaneously Q-switched and mode-locked intracavity frequency doubled Nd:GdVO4/LBO red laser with an acousto-optic Q-switch was realized. The maximum red laser output power of 250 mW was obtained at the incident pump power of 8.3 W and the repetition rate of 10 kHz. At 5 kHz, the maximum mode-locking modulation depth of about 80% was achieved with the Q-switched pulse width of 440 ns. The red mode-locked pulse inside the Q-switched pulse had a repetition rate of 115 MHz, its average pulse width was estimated to be about 350 ps.  相似文献   

7.
In this paper, a high-power continuous-wave deep blue laser at 447 nm with intracavity tripling was achieved. The deep blue laser at 447 nm is obtained by using a doubly cavity, and type-II critical phase matching KTP crystal for intracavity sum-frequency mixing. Through designing of the cavity, the optimum matching of modes and gains for the two wavelengths was obtained. With incident pump power of 30 W for the Nd:YVO4 crystal and 16 W for the other Nd:YVO4 crystal, the deep blue laser output of 3.5 W at 447 nm with TEM00 mode was obtained, the beam quality M2 value was equal to 1.8 in both horizontal and vertical directions at the maximum output power, and the power stability is better than 3% at the maximum output power during half an hour. The experimental results show that the intracavity sum-frequency mixing by doubly resonant is an effective method for high-power blue laser.  相似文献   

8.
We report a red laser at 670.5 nm generation by intracavity frequency doubling of a continuous wave (CW) laser operation of a 1341 nm Nd:GdVO4 laser under in-band diode pumping at 912 nm. An LBO crystal, cut for critical type I phase matching is used for second harmonic generation of the laser. At an incident pump power of 8.9 W, as high as 347 mW of CW output power at 670.5 nm is achieved. The fluctuation of the red output power was better than 3.7% in the given 30 min, and the beam quality factor M 2 is 1.65.  相似文献   

9.
X. H. Fu  Y. Che  Y. L. Li 《Laser Physics》2011,21(6):1021-1023
It is reported that efficient continuous-wave (CW) green laser generation at 540 nm in a KTP crystal at type-II phase matching direction performed with a diode-pumped Nd:CaYAlO4 laser. With incident pump power of 18.2 W, output power of 324 mW at 540 nm has been obtained using a 5 mm-long KTP crystal. At the output power level of 324 mW, the output stability is better than 2.8%. The beam quality M 2 values were equal to 1.34 and 1.22 in X and Y directions, respectively.  相似文献   

10.
A comparative study in terms of optimized output power and stability is made on cascaded second-order nonlinear optical mode-locking with KTP, BBO and LBO crystals for both 1064 nm and 532 nm. Large nonlinear optical phase shift achieved in a non-phase-matched second harmonic generating crystal, is transformed into amplitude modulation through soft aperturing the nonlinear cavity mode variation at the laser gain medium to mode-lock a Nd:YVO4 laser. The laser delivers stable dual wavelength cw mode-locked pulse train with pulse duration 10.3 ps and average power of 1.84 W and 255 mW at 1064 nm and 532 nm respectively for the optimum performance in type-II KTP crystal. The exceptional stability achieved with KTP is accounted by simulating the mode-size variation with phase mismatch.  相似文献   

11.
It is reported that efficient continuous-wave (CW) red laser generation at 693 nm in a LBO crystal at type-I phase matching direction performed with a diode-pumped Nd:YVO4 laser. With incident pump power of 18.2 W, output power of 278 mW at 693 nm has been obtained using a 10 mm-long LBO crystal. At the output power level of 278 mW, the output stability is better than 2.9%.  相似文献   

12.
It is reported that efficient continuous-wave (CW) red laser generation at 670 nm in a LBO crystal at type-I phase matching direction performed with a diode-pumped Nd3+:YAlO3 (Nd:YAP) laser. With incident pump power of 15.6 W, output power of 273 mW at 670 nm has been obtained using a 10 mm-long LBO crystal. At the output power level of 273 mW, the output stability is better than 3.7%.  相似文献   

13.
An LD-pumped Nd:YVO4 passively Q-switched by V:YAG and intracavity frequency doubled by LBO red pulse laser at 671 nm was presented. With 1.6 W incident pump power, average output power of 53 mW, pulse duration (FWHM) of 29.5 ns, pulse repetition rate of 37.2 kHz, peak power of 48.3 W and single-pulse energy of 1.43 μJ were obtained. The stability of pulse energy and repetition rate was better than 3% for 4 h.  相似文献   

14.
飞秒紫外激光脉冲振荡的实验研究   总被引:1,自引:0,他引:1  
本文讨论了采用空间光脉冲光谱的啁啾特性和选择聚焦透镜焦距相结合的技术大大提高二次谐波转换效率和产生紫外飞秒光脉冲的实验研究.采用一类相位匹配的BBO晶体,当飞秒钛宝石光脉冲平均功率为560mW时,二次谐波输出功率为352mW,二次谐波转换效率高达63%;采用一类相位匹配的LBO晶体时,获得高光束质量的倍频蓝光输出,输出平均功率为170mW,转换效率大于30%.运用LBO倍频产生的蓝光脉冲和剩余的基频光脉冲进行了三次谐波的振荡研究.三倍频晶体采用BBO,通过优化设计倍频光与基频光之间的空间模匹配及精确时间延迟,得到飞秒紫外光输出,输出功率为2mW,中心波长约为280nm,重复率为100MHz.  相似文献   

15.
The results of experimental and theoretical investigations of passive Q-switch Raman microchip lasers based on Nd3+:LSB active medium and Ba(NO3)2 Raman crystal are presented. It has been demonstrated that intracavity Raman conversion in the microchip lasers is a simple and efficient method, capable of delivering high power pulses with sub-100 ps duration. Intracavity generation of the 1st Stokes pulses with duration from 180 down to 48 ps and a peak power of 48 kW has been performed and studied. High peak power and short duration of the 1st Stokes pulses in microchip laser with Ba(NO3)2 Raman crystal allows to easily perform extracavity harmonic generation and frequency sum mixing in LBO, BBO, and KTP crystals with discrete-tunable wavelength from ∼1200 down to ∼240 nm. We have developed a generalized model of Q-switched Raman microchip lasers, that takes into account spatial inhomogeneity of pump, laser, and Stokes beams, thermalization within the upper and lower multiplets of activator ions in laser medium, and saturable absorber bleaching and recovery. For the microchip lasers with different saturable absorbers, the model achieves very good agreement with the presented experimental results in a wide range of pump powers.  相似文献   

16.
With a type-I critical phase-matching LBO crystal, an intracavity frequency doubled solid-stated Yb:YAG green laser is reported. Using a plano-concave resonator, with pump power of 1.37 W, 24.5 mW TEM00 continuous wave laser at 525 nm was obtained. The optical conversion efficiency is 1.8%. By adjusting the placed angle of LBO, several lasers wavelength from 525.0 to 537.8 nm could be extracted. The maximum output power at 537.8 nm is 3.1 mW.  相似文献   

17.
It is reported that efficient continuous-wave (CW) blue-green laser generation at 500 nm in a LBO crystal at type-I phase matching direction performed with a Ti:sapphire laser-pumped Yb:KYW laser. With incident pump power of 8.7 W, output power of 138 mW at 500 nm has been obtained using a 10 mm-long LBO crystal. At the output power level of 138 mW, the blue-green output stability is better than 2.8%. The blue-green beam quality M 2 values were equal to 1.25 and 1.18 in X and Y directions, respectively.  相似文献   

18.
A laser-diode end-pumped acousto-optic (AO) Q-switched Nd:YVO4/KTP red laser by using a plano-concave cavity was demonstrated for the first time. This linear cavity configuration could guarantee not only moderate intracavity focusing on KTP crystal but also good beam quality. Under the absorbed pump power of 14.8 W, the maximum average output power at 671 nm was obtained to be 1.37 W at the repetition frequency of 15 kHz, with the corresponding optical conversion efficiency of 9.3% and the pulse width of 33 ns. The energy of a single pulse and corresponding peak power are estimated to be 91.3 μJ and 2.77 kW, respectively. The rate equations are also numerically solved by introducing the nonlinear loss resulting from generation of second-harmonic wave.  相似文献   

19.
We design a passively Q-switched intracavity frequency-doubled 532 nm laser using Nd:YAG/Cr4+:YAG composite crystal and type II phase matching KTP crystal. Under 13.97 W pump power, the average output power of the laser elaborated is up to 681 mW, with 200 ns pulse width and 9.1 kHz pulse repetition rate.  相似文献   

20.
We report a green laser at 531 nm generation by intracavity frequency doubling of a continuous wave (cw) laser operation of a 1062 nm Nd:GAGG laser under in-band diode pumping at 808 nm. A LiB3O5 (LBO) crystal, cut for critical type I phase matching at room temperature is used for second harmonic generation of the laser. At an incident pump power of 18.5 W, as high as 933 mW of cw output power at 531 nm is achieved. The fluctuation of the green output power was better than 3.5% in the given 4 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号