首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The adsorption of cationic polyelectrolytes on colloidal silica-particles is investigated. The polyelectrolytes poly(diallyl-dimethyl-ammoniumchloride) PDADMAC of different molar mass have been used. The adsorbed amount is influenced by the ionic strength and pH of the suspension and the molar mass of the macromolecule. The adsorption determines the zetapotential of the covered particles. The electrostatic interaction between the particles as well as the structure of the adsorbed polyelectrolytes play an important role in the stabilization and flocculation behaviour of the polyelectrolyte covered suspensions.  相似文献   

2.
The influence of Zetag and SNF FO cationic polyelectrolytes on the aggregation kinetics of bentonite particles in a flow system is studied in detail as a function of the dose of added polymer, charge density of its macromolecules, the regime and intensity of system stirring, and the type of stirrer (magnetic and mechanical stirrers). It is shown that there is an optimal regime, namely, the alternation of slow and rather rapid stirring, that provides the formation of the largest and strongest flocs. The rate of aggregation and the size of formed flocs increase with the amount of added reagent irrespective of the intensity of system stirring, as well as with an increase in the charge density of polyelectrolyte, which is responsible for the affinity of macromolecules for the surface. The effect of polymer charge on the flocculation kinetics is exhibited first of all upon the slow stirring of suspension. The difference in the sizes of aggregates resulted from the flocculation of macromolecules with different charges is leveled with an increase in stirring intensity. An empirical method for comparing the efficiency of the flocculating action of polymers in suspensions prepared using different types of stirrers is proposed.  相似文献   

3.
The effects of cationic (Zetag 7589, Zetag 8660, and SNF 528) and anionic (Magnafloc 1011) polyelectrolytes, as well as the regimes and intensity of suspension stirring, on the kinetics of formation, disruption, and subsequent regrowth of aggregates of bentonite and kaolin particles, are studied in a flow system. The optimum polymer doses and the stirring conditions providing the formation of largest and strongest floccules are found. Under comparable conditions, the effect of the adsorption of the above polymers on the electrokinetic potential and the degree of aggregation of particles is studied. It is shown that intense flocculation takes place long before the isoelectric point of particles is reached. This allows one to conclude that the formation of polymer bridges plays a significant role in the flocculation of the examined suspensions with polyelectrolytes. Different dependencies of flocculation on the dose of added polyelectrolytes have been found for diluted and concentrated suspensions. This is explained by different extents to which flocculants adsorbed on the particle surface approach the equilibrium state at different concentrations of dispersed phases.  相似文献   

4.
Following our recent synthesis and characterization of three new cationic polyelectrolytes with subtle hydrophobic variability, this paper reports their physical and chemical properties in aqueous media in relation to their chemical structure. Aryl substituted cationic polyelectrolytes varying with their charge density are reported for the first time. Viscosity studies show that these polymers display typical polyelectrolytic behavior. The flocculation efficiency of the polyelectrolytes was investigated with different counter ions. The zeta potential of the polyelectrolytes indicates the charge of the mono and diquaternary ammonium salts which is supported by chloride analysis. The morphology of polymer before and after flocculation was investigated. The introduction of methylene group and quaternary nitrogen play an important role in the flocculation process. It was shown that increasing the hydrophobicity and charge density of the aryl substituted polymer affects the flocculation in the industrial tannery effluent and bentonite suspension.  相似文献   

5.
The effect of cationic and anionic surfactants, as well as cationic and anionic polyelectrolytes (PE), their binary mixtures on the electrokinetic potential of monodisperse carboxylated polystyrene (PS) particles as a function of the reagents dose, pH, the charge density (CD) of polymers, the surfactant/PE and binary PE mixture composition, and sequence of components addition to the suspension has been studied. It has been shown that addition of increasing amount of anionic surfactant/polyelectrolytes increases the absolute value of the negative zeta-potential of PS particles; this increase is stronger the CD of the PE and pH of the system are higher. Adsorption of cationic surfactant/polyelectrolytes leads to a significant decrease in the negative ζ-potential and to overcharging the particles; changes in the ζ-potential are more pronounced for PE samples with higher CD and for suspensions with lower pH values. In mixtures of cationic and anionic PE, in a wide range of mixture composition, the ζ-potential of particles is determined by the adsorbed amount of the anionic polymer independently of the CD of PEs and the sequence of addition of the mixture components. The isoelectric point of the surface is reached at the adsorbed amount of positive charges of PE that is approximately equal to the surface CD of particles. The laws observed were explained by features of macromolecules conformation in adsorbed mixed PE layers. Considerations about the role of coulombic and non-coulombic forces in the mechanism of anionic/cationic PE adsorption are presented.  相似文献   

6.
The possibility to concentrate, then redisperse colloidal suspensions is not only of great theoretical interest, but is also relevant to the industrial process of solid-liquid separation, which must often be followed by a redispersion stage. Up to now, these consecutive operations were unrealizable in the presence of polymers, since flocculation and adsorption were generally considered irreversible in this case. Previous studies have pointed out the occurrence of two main flocculation mechanisms: charge neutralization and interparticle bridging. The use of copolymers makes it possible to take into account these two different mechanisms together. Using this fact we prepared new copolymers of acrylamide with N-vinylimidazole via radical polymerization and characterized them by light scattering, viscometry, potentiometric titrations, and UV studies. One peculiarity of the chosen system is its dependence on pH: actually the degree of neutralization of such cationic polyelectrolytes does vary with pH, especially near the pK value. This paper shows that these copolymers may induce reversible flocculation of negatively charged suspensions, e.g., silica suspensions, by simple pH adjustment. Performances of the system were followed by various physico-chemical methods. The observed results are explained in terms of flocculation mechanisms as a function of pH.  相似文献   

7.
Peculiarities of the formation of polyelectrolyte complexes based on cationic and anionic copolymers of acrylamide having different macromolecule charge densities on the surfaces of kaolin particles in highly concentrated salt solution are investigated. The interactions of the copolymers with the clay particle surface and with each other are studied by electrokinetic and IR spectroscopy methods. The rheological properties of kaolin suspensions are investigated in a salt solution in the presence of the polyelectrolytes. The flocculation ability of the polyelectrolytes and their binary mixtures with respect to clay-salt dispersion is estimated. The mechanism for the formation of polyelectrolyte complexes on the surface of clay particles is discussed. It is shown that the complexation of oppositely charged polyelectrolytes on the surfaces of clay particles intensifies the flocculation of clay-salt dispersions.  相似文献   

8.
 The stabilization and flocculation behavior of colloidal silica-particles with cationic polyelectrolytes (PE) is investigated. The zetapotentials, diffusion coefficients and flocculation rate constants of silica particles have been measured as a function of the adsorbed amount of cationic polyelectrolytes poly(diallyl-dimethyl-ammoniumchloride) (PDADMAC) of different molar masses and of statistic copolymers of DADMAC and N-methyl-N-vinyl-acetamide (NMVA) of various compositions at different salt concentrations and pH-values. Very fast flocculation due to van der Waals attraction occurs if the zetapotential is small. At low ionic strength this condition occurs just below the plateau of the adsorption isotherms where the surface charges are screened by adsorbed polycations. Additionally with high molecular polycations slow mosaic flocculation is observed at lower PE concentrations. At high ionic strength fast flocculation takes place at low macroion concentration due to the screening of the surface charges by adsorbed polycations and salt ions. At medium concentrations of polycations below plateau adorption slow bridging flocculation is observed. At plateau adsorption the suspensions become stabilized up to high ionic strength. At low salt concentration charge reversal at full coverage with polycations results in electrostatic repulsion. At high ionic strength the particles are stabilized sterically due to the osmotic repulsion of the long adsorbed PE tails. Therefore macroions of high molar mass are necessary to stabilize the suspension at high ionic strength. Received: 27 January 1998 Accepted: 23 March 1988  相似文献   

9.
The stabilization and flocculation behaviour of colloidal latex particles covered with cationic polyelectrolytes (PE) is studied with photon correlation spectroscopy and zetapotential measurements. Diffusion coefficients, flocculation rate constants and zetapotentials have been determined as a function of adsorbed amount of cationic poly-(diallyl-dimethyl-ammoniumchloride) (PDADMAC) of different molar masses and of statistic copolymers of DADMAC and N-methyl-N-vinyl-acetamide (NMVA) of various compositions in water and at high ionic strength. Flocculation by van der Waals attraction can be observed if the zetapotential is low. This occurs, if the surface charge is screened by the oppositely charged cations. Furthermore, in the case of adsorption of high molecular polycations mosaic flocculation occurs if the adsorbed amount is low. At high ionic strength, flocculation takes place if the adsorbed amount is below the adsorption plateau. If the adsorption plateau is reached the suspensions become stabilized. In water the charge reversal at full coverage leads to electrosteric stabilization both with low and high molar mass polycations. At high ionic strength only polycations with high molar mass are able to stabilize the suspension. If a certain molar mass of the polycation is exceeded, steric stabilization of the suspension occurs due to the formation of long adsorbed PE tails and their osmotic repulsion. The layer thicknesses are determined as a function of the molar mass. Received: 4 July 2000/Accepted: 18 August 2000  相似文献   

10.
The effect pH, ionic strength (KCl concentration), weakly and medium charged anionic and cationic polyelectrolytes (PEs) as well as their binary mixtures on the electrokinetic potential of silica particles as a function of the polyelectrolyte/mixture dose, its composition, charge density (CD) of the PE, and way of adding the polymers to the suspension has been studied. It has been shown that addition of increasing amount of anionic PEs increases the absolute value of the negative zeta-potential of particles at pH > pH isoelectric point (IEP = 2.5); this increase is stronger the charge density of the polyelectrolyte is higher. Adsorption of cationic polyelectrolytes at these pH values gives a significant decrease in the negative ζ-potential and overcharging the particles; changes in the ζ-potential are more pronounced for PE samples with higher CD. In mixtures of cationic and anionic PE at pH > pHIEP, the ζ-potential of particles is determined by the adsorbed amount of the anionic polymer independently of the CD of PEs, the mixture composition and the sequence of addition of the mixture components. Unexpectedly, the ζ-potential of silica at pH = 2.1, i.e. < pHIEP, turned out to be positive in the presence of both anionic PE and cationic + anionic PE mixtures. This is explained by formation (and adsorption onto positively charged silica surface) of pseudo-cationic PEs from anionic ones due to transfer of protons from the solution to the amino-group of the anionic polymer. Considerations about the role of coulombic and non-coulombic forces in the mechanism of PE adsorption are presented.  相似文献   

11.
The flocculation kinetics of kaolin particles induced by two polyelectrolytes is studied by using small-angle laser light scattering (SALLS). Two different methods, image analysis and SALLS, are used to calculated the fractal dimensions of flocs formed under different flocculation mechanisms. For a high charge density of polydiallyldimethylammonium chloride (PDADMAC), the initially flocculation rates are slow due to the quite low molecular weight. Smaller and more compact flocs are in the particle–particle connections, and restructuring of the flocs occurs in the flocculation process. With cationic polyacrylamide C498 of very high molecular weight and low charge density, however, the initially flocculation rates are much higher due to its rapid adsorption on kaolin particles, but it will take the adsorbed polymer a much longer time to reach equilibrium due to re-conformation. High potentialities of adsorption prevent the particles from entering the interior of the floc structure or rearrangement, which results in a more open floc structure. Different underlying flocculation mechanisms are evident for these two kinds of polyelectrolytes, in which charge neutralization is mainly involved for the low molecular weight and high charge density polymer of PDADMAC while polymer bridging is suggested to be the dominant mechanism for the high molecular weight polyelectrolyte of C498.  相似文献   

12.
In order to describe the influence of cationic polyelectrolytes on flocculation of disperse systems the adsorption of poly (diallyldimethylammonium chloride) (PDADMAC) onto silica, mica and acidic polymer latex was investigated. The plateau value of the adsorption isotherms grows with increasing surface charge density of the substrates and electrolyte concentration. The adsorbed layer of the polycation was characterized by zeta potential measurements with KCl solutions of constant ionic strength and varied pH. The zero point of the charge as well as the shape of the zeta potential–pH plot depends on the coverage of the surface with polycations. For fully covered substrates the zero point of the charge as well as the pKA and pKB values calculated by a stochastic search programme are independent of the substrate. Maximum flocculation was observed at about 30% of the plateau value of the adsorption isotherms.  相似文献   

13.
Ethanol/water pervaporation through ultrathin polyelectrolyte multilayer membranes is described. The membranes were prepared by the layer-by-layer technique, i.e. by alternating sequential adsorption of cationic and anionic polyelectrolytes on a porous support. The separation capability was optimized by variation of the chemical structure of the polyelectrolytes, by variation of pH and ionic strength of the polyelectrolyte solutions used for membrane preparation and by annealing of the polyelectrolyte membranes. It was found that the separation is mainly affected by the charge density of the polyelectrolytes which is controlled by the chemical structure and the degree of ionisation of the polar groups. Selectivity for water was highest, if polyelectrolytes of high charge density such as polyethyleneimine (PEI), polyvinylamine (PVA) and polyvinylsulfate (PVS) were used and if the pH of the polyelectrolyte solutions was equal to the mean of the pKa values of the corresponding cationic and anionic polyelectrolyte. Best results were obtained for PVA/PVS and PEI/PVS membranes which are characterized in detail with regard to their separation behavior.  相似文献   

14.
The flocculation of colloidal suspensions is an important unit operation in many industries, as it greatly improves the performance of solid separation processes. The number of available techniques for evaluating flocculation processes on line is limited, and most of these are only functional in dilute suspensions. Thus, techniques usable for flocculation characterization in high-solids suspensions are desirable. This study investigates the use of dielectric spectroscopy to monitor the flocculation of polystyrene particles with a cationic polymer. The frequency-dependent permittivity is modeled and the model parameters are used to describe the particle aggregation. The results show a peak in the modeled time constants of the dielectric relaxation at the onset of flocculation. Further, the adsorption of polymeric flocculant onto the particle surface results in a reduction in particle charge, evident as a decrease in the magnitude of the dielectric dispersion. The use of dielectric spectroscopy is found to be valuable for assessing flocculation processes in high-solids suspensions, as changes in parameters such as floc size and charge can be detected.  相似文献   

15.
The regularities of the flocculation of kaolin suspensions with binary mixtures of cationic polyelectrolytes are studied. The relationship between the viscosity of flocculant solutions and the conditions of efficient flocculation is studied. It is established that an increase in the sedimentation rate upon the application of binary mixtures of flocculants results form their synergistic effect. The synergistic effect is assumed to be due to a reduction in the swelling coefficient of adsorbed polyelectrolyte macromolecules, which gives rise to the formation of floccules with enhanced density and strength.  相似文献   

16.
Kinetic regularities of flocculation of model kaolin suspensions by highly substituted cationic flocculants synthesized from different starches (corn, waxy corn, potato, and tapioca starches) have been studied as depending on the doses and vegetable origins of the flocculants. The rate of kaolin suspension flocculation has been found to increase with the dose of the cationic starches of all types. It has been shown that, irrespective of the dose, the highest rate of kaolin sedimentation in the model systems is observed in the presence of cationic potato starch. It has been demonstrated that cationic potato starch flocculates kaolin suspensions with concentrations of 0.1, 0.5, and 1.0% with the same efficiency. In this case, the suspensions are almost completely clarified within 2–5 min. Moreover, the dependence of the flocculating efficiency for a 0.1% model suspension on the dose of cationic starch has been found to pass through a maximum at a starch content of 1.0–5.0 mg/g of kaolin depending on the type of starch.  相似文献   

17.
The synthesis of quaternized silica nanoparticles and its application to fine clay flocculation were investigated. N-trimethoxysilylpropyl-N,N,N-trimethylammonium chloride was used as a cationic reagent to introduce quaternary amine groups onto the surfaces of silica nanoparticles via the formation of covalent bonds between the methoxy groups of the cationic reagents and the silanol groups in the silica surface. The zeta potential, zeta, and charge density of the silica particles modified under various reaction conditions were determined. Dynamic clay flocculation experiments using a photometric dispersion analyzer (PDA) showed that the cationic silica alone contributed little to the flocculation. However, the cationic silica, in conjunction with an anionic polymer of high M(w) and low charge density, led to a significant improvement in the flocculation of fine clay particles. The mechanism of flocculation was explored by a systematic investigation of interaction between cationic silica and anionic polymers as well as of their adsorption behavior on clay surfaces. The influence of factors such as pH and electrolyte concentration on clay flocculation was also investigated.  相似文献   

18.
Interrelation between the coagulation rate, adsorption and electrokinetic properties of silica polydisperse suspensions in the presence of cationic surfactants is studied. The highest coagulation rate is observed in a certain concentration range of the cationic surfactants. When pH values increases, an increasing amount of cationic surfactant is required to achieve maximal coagulation rate. For bisquaternary cationic surfactants, ethonium and decamethoxine, maximal coagulation rate is observed at concentrations by an order of magnitude lower than for monoquaternary cetyltrimethylammonium bromide. It is concluded that the suspensions lost their stability as a result of both neutralization of particle surface charge and flocculating effect of the cationic surfactants. Moreover, the flocculation mechanism depends on the cationic surfactant nature and physicochemical parameters of the medium, ionic strength and pH.  相似文献   

19.
Flocculation of kaolin suspension with a binary mixture of cationic polyelectrolytes is studied by optical microscopy and turbidimetry. Interrelation between the thermodynamic compatibility of components in the solution and flocculation conditions is examined.  相似文献   

20.
In order to elucidate the mechanisms of flocculation by polymer mixtures, the effect of adsorption of non-ionic poly(ethylene oxide) — PEO, two samples of strongly (SNF FO 4800) and medium charged (SNF FO 4350) cationic and two samples of medium (SNF AN 935) and weakly charged (SNF AN 905) anionic polyelectrolytes (PE) as well as their binary mixtures on the electrokinetic potential of bentonite and kaolin particles has been studied. It is shown that in the presence of PEO-anionic/cationic polymer mixture, the electrokinetic potential of particles is determined by the adsorption of the polyelectrolyte; neither cationic nor anionic segments can be displaced by the non-ionic polymer. In mixtures of cationic and anionic polyelectrolytes, the ζ-potential of particles is determined by the adsorbed amount of anionic polymer independently of the charge density of PE and way of addition of the mixture components to the suspension, i.e. (1) first adding the cationic polymer, then the anionic one, or (2) first adding the anionic polymer then the cationic one, or (3) adding an increasing amount of pre-prepared 1: 1 mixture. The highest absolute ζ-potential values are observed for pH 7.5 when the surface of bentonite or kaolin particles is “purely” negatively charged and the anionic PE layer is most extended because of few contacts to the surface. With decreasing the pH, the (negative) ζ-potential of particles decreases due to appearance of a small amount of positive charges on the surface that bond an increasing amount of negative segments and results in shrinking of the adsorbed layer of the anionic PE. It is shown also that the electrokinetic potential of particles in anionic and cationic PE mixtures at all studied pH (4, 5, and 7.5) depends on the spatial distribution of negatively charged segments near the surface. The regularities observed are explained by formation of long loops and tails of anionic segments on the surface because of the small number of contacts to the surface; the cationic polyelectrolyte forms on the surface a thin layer with a big number of contacts and which is hidden behind the more extended anionic polymer layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号