首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A polymer monolith microextraction method coupled with high‐performance liquid chromatography was developed for the determination of adenosine triphosphate, adenosine diphosphate, and adenosine monophosphate. The monolithic column was synthesized inside fused‐silica capillaries using thermal initiation free‐radical polymerization with glycidyl methacrylate as the monomer, ethylene dimethacrylate as the cross‐linker, cyclohexanol, and 1‐dodecanol as the porogen. N‐Methylolacrylamide, an important hydrophilic monomer, was incorporated into the polymerization mixture to enhance the hydrophilicity of the poly(glycidyl methacrylate‐co‐ethylene dimethacrylate) column. The obtained poly(glycidyl methacrylate‐coN‐methylolacrylamide‐co‐ethylene dimethacrylate) monolith was characterized by scanning electron microscopy, Fourier‐transform infrared spectra, and X‐ray photoelectron spectroscopy. Optimum conditions for the preconcentration and separation of the target adenosines were also investigated. Under the optimum conditions, we obtained acceptable linearities, low limits of detection, and good relative standard deviations. The developed polymer monolith microextraction with high‐performance liquid chromatography method exhibited a good performance with recovery values in the range of 76.9?104.7% when applied to the determination of the adenosines in five royal jelly samples.  相似文献   

2.
To further evaluate the feasibility and applicability of the one‐pot strategy in monolithic column preparation, two novel β‐cyclodextrin‐functionalized organic polymeric monoliths were prepared using two β‐cyclodextrin derivatives, i.e. mono(6‐amino‐6‐deoxy)‐β‐cyclodextrin and heptakis(6‐amino‐6‐deoxy)‐β‐cyclodextrin. In this improved method, mono(6‐amino‐6‐deoxy)‐β‐cyclodextrin or heptakis(6‐amino‐6‐deoxy)‐β‐cyclodextrin reacted with glycidyl methacrylate to generate the corresponding functional monomers and were subsequently copolymerized with ethylene dimethacrylate. The polymerization conditions for both monoliths were carefully optimized to obtain satisfactory column performance with respect to column efficiency, reproducibility, permeability, and stability. The obtained poly(glycidyl methacrylate‐mono(6‐amino‐6‐deoxy)‐β‐cyclodextrin‐co‐ethylene dimethacrylate) and poly(glycidyl methacrylate‐heptakis(6‐amino‐6‐deoxy)‐β‐cyclodextrin‐co‐ethylene dimethacrylate) monoliths exhibited a uniform structure, good permeability, and mechanical stability as indicated by scanning electron microscopy and micro‐high‐performance liquid chromatography experimental results. Because of the probable existence of multi‐glycidyl methacrylate linking spacers on the poly(glycidyl methacrylate‐heptakis(6‐amino‐6‐deoxy)‐β‐cyclodextrin‐co‐ethylene dimethacrylate) monolith, the effect of the ratio of glycidyl methacrylate/heptakis(6‐amino‐6‐deoxy)‐β‐cyclodextrin was especially studied, and satisfactory reproducibility could still be achieved by strictly controlling the composition of the polymerization mixture. To investigate the effect of the degree of amino substitution of β‐cyclodextrin on column performance, a detailed comparison of the two monoliths was also carried out using series of analytes including small peptides and chiral acids. It was found that the β‐cyclodextrin‐functionalized monolith with mono‐glycidyl methacrylate linking spacers demonstrated better chiral separation performance than that with multi‐glycidyl methacrylate linking spacers.  相似文献   

3.
Uniform‐porous poly(dihydroxypropyl methacrylate‐co‐ethylene dimethacrylate), poly(DHPM‐co‐EDM) particles were synthesized as an alternative packing material for reversed phase chromatography. In the synthesis, poly(glycidyl methacrylate‐ethylene dimethacrylate), poly(GMA‐co‐EDM) particles were obtained by a multi‐stage swelling and polymerization protocol, the so called “modified seeded polymerization”. For this purpose, 2.4 µm polystyrene seed particles were first swollen by dibutyl phthalate (DBP) and then by a monomer mixture including glycidyl methacrylate and ethylene dimethacrylate. The repolymerization of monomer phase in the swollen seed particles provided porous uniform particles approximately 7 µm in size. Poly(DHPM‐co‐EDM) particles were obtained by the acid hydrolysis of the particles synthesized with different GMA feed concentrations. These particles were used as column‐packing material in the reversed phase separation of alkylbenzenes. The retention factor‐acetonitrile concentration diagrams clearly showed that the polarity of packing material could be controlled by changing the GMA feed concentration in the “modified seeded polymerization”. The packing materials with more hydrophobic character (i.e., poly(EDM) and poly(DHPM‐co‐EDM) particles produced with the GMA feed concentrations up to 20%) exhibited better chromatographic performance in the reversed phase mode.  相似文献   

4.
Polystyrene template microspheres of narrow size distribution were prepared by dispersion polymerization of styrene in a mixture of ethanol and 2‐methoxy ethanol. Spherical and hemispherical polystyrene/poly(glycidyl methacrylate) microspheres of narrow size distribution were prepared by a single‐step swelling of the polystyrene template microspheres with the swelling solvent monomer glycidyl methacylate, followed by polymerization of the monomer within the swollen template microspheres at 73 °C. Uniform polystyrene/poly(glycidyl methacylate‐ethylene glycol dimethacrylate) polyepoxide composite microspheres were synthesized similarly, substituting glycidyl methacylate for glycidyl methacylate and ethylene glycol dimethacrylate. Uniform crosslinked poly(glycidyl methacylate‐ethylene glycol dimethacrylate) polyepoxide microspheres have been prepared by dissolution of the PS template polymer of the former composite microspheres. Particles with different properties, for example size, size distribution, shape, surface morphology, surface area, and so forth, were prepared by changing various parameters belonging to the swelling and/or polymerization steps, for example, volume of the swelling monomer/s and/or the swelling solvent dibutyl phthalate. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4612–4622, 2007  相似文献   

5.
Monolithic columns were synthesized inside 1.02 mm internal diameter fused‐silica lined stainless‐steel tubing. Styrene and butyl, hexyl, lauryl, and glycidyl methacrylates were the functional monomers. Ethylene glycol dimethacrylate and divinylbenzene were the crosslinkers. The glycidyl methacrylate polymer was modified with gold nanoparticles and dodecanethiol (C12). The separation of alkylbenzenes was investigated by isocratic elution in 60:40 v/v acetonitrile/water. The columns based on polystyrene‐co‐divinylbenzene and poly(glycidyl methacrylate)‐co‐ethylene glycol dimethacrylate modified with dodecanethiol did not provide any separation of alkyl benzenes. The poly(hexyl methacrylate)‐co‐ethylene glycol dimethacrylate and poly(lauryl methacrylate)‐co‐ethylene glycol dimethacrylate columns separated the alkyl benzenes with plate heights between 30 and 60 μm (50 μL min?1 and 60°C). Similar efficiency was achieved in the poly(butyl methacrylate)‐co‐ethylene glycol dimethacrylate column, but only at 10 μL min?1 (0.22 mm s?1). Backpressures varied from 0.38 MPa in the hexyl methacrylate to 13.4 MPa in lauryl methacrylate columns (50 μL min?1 and 60°C). Separation of proteins was achieved in all columns with different efficiencies. At 100 μL min?1 and 60°C, the lauryl methacrylate columns provided the best separation, but their low permeability prevented high flow rates. Flow rates up to 500 μL min?1 were possible in the styrene, butyl and hexyl methacrylate columns.  相似文献   

6.
A novel polymeric ionic liquid grafted porous polymer monolith has been facilely fabricated for mixed‐mode chromatography. The column is prepared from poly (glycidyl methacrylate‐co‐ethylene dimethacrylate) monolith through hydrolyzation of the epoxy moieties into hydroxyl groups, followed by "grafting from" polymerization of ionic liquid of 1‐vinyl‐3‐butylimidazolium chloride. Successful modification is characterized by scanning electron microscope, infrared spectroscopy, elemental analysis and mercury intrusion porosimetry. The HPLC performance of developed column is evaluated by separating acidic vitamin B analytes, neutral steroids and basic aromatic amines in mixed‐mode chromatography on a single column, respectively. The ionic liquid affords the monolith with both enhanced separation ability and improved column efficiency.  相似文献   

7.
Two different methods to reinforce the poly(glycidyl methacrylate‐co‐ethylene dimethacrylate) HPLC monolithic columns of 3 mm id in a glass column reservoir were studied: composite columns with polymeric particles in the monolith and surface treatment of the reservoir wall. Of the two methods used to counter the mechanical instability and formation of flow channels (composite columns and column wall surface treatment), we demonstrated that proper column wall surface treatment was sufficient to solve both problems. Our study also indicated that no surface treatment is efficient, and of the methods studied silanization in acidified ethanol solution and constant renewal of the reaction mixture (dynamic mode) proved to be the most effective. As a result of this study, we have been able to prepare repeatable and durable methacrylate HPLC columns with good efficiencies.  相似文献   

8.
The layer‐by‐layer (LbL) self‐assembly has been used to fabricate polymer thin films on any solid substrates. The multilayer polymer thin films are constructed by alternating adsorption of anionic and cationic polymers. Polyelectrolyte multilayer ultrathin films containing anionic poly[2‐(thiophen‐3‐yl)ethyl methacrylate‐co‐methacrylic acid]; P(TEM‐co‐MA) and cationic poly[4‐(9H‐carbazol‐9‐yl)‐N‐butyl‐4‐vinyl pyridium bromide]; P4VPCBZ, were fabricated. The growth of multilayer ultrathin films was followed by UV–Vis absorption spectrophotometer and surface plasmon resonance spectroscopy (SPR). The deposition of P(TEM‐co‐MA)/P4VPCBZ as multilayer self‐assembled ultrathin films regularly grow which showed linear growth of absorbance and thickness with increasing the number of layer pair. Cross‐linking of the layers was verified by cyclic voltammetry (CV), UV–Vis spectrophotometry and electrochemical surface plasmon resonance (EC‐SPR) spectroscopy with good electro‐copolymerizability. This was verified by spectroelectrochemistry. The SPR angular‐reflectivity measurement resulted in shifts to a higher reflectivity according to the change in the dielectric constant of the electropolymerized film. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Ultrashort monolithic columns (disks) were thoroughly studied as efficient stationary phases for precipitation–dissolution chromatography of synthetic polymers. Gradient elution mode was applied in all chromatographic runs. The mixtures of different flexible chain homopolymers, such as polystyrenes, poly(methyl methacrylates), and poly(tert‐butylmethacrylates) were separated according to their molecular weights on both commercial poly(styrene‐co‐divinylbenzene) disks (12 id × 3 mm and 5 × 5 mm) and lab‐made monolithic columns (4.6 id × 50 mm) filled with supports of different hydrophobicity. The experimental conditions were optimized to reach fast and highly efficient separation. It was observed that, similar to the separation of monoliths of other classes of (macro)molecules (proteins, DNA, oligonucleotides), the length of column did not affect the peak resolution. A comparison of the retention properties of the poly(styrene‐co‐divinylbenzene) disk‐shaped monoliths with those based on poly(lauryl methacrylate‐co‐ethylene dimethacrylate), poly(butyl methacrylate‐co‐ethylene dimethacrylate), and poly(glycidyl methacrylate‐co‐ethylene dimethacrylate) supports demonstrated the obvious effect of surface chemistry on the resolution factor. Additionally, the results of the discussed chromatographic mode on the fast determination of the molecular weights of homopolymers used in this study were compared to those established by SEC on columns packed with sorbent beads of a similar nature to the monoliths.  相似文献   

10.
Novel 3‐aminophenylboronic acid functionalized poly(glycidyl methacrylate‐co‐ethylene dimethacrylate) microspheres were prepared for the solid‐phase extraction of glycopeptides/glycoproteins. The adsorption efficiency, maximum adsorption capacity, and specific recognition of the microspheres to glycoprotein were investigated. The results indicated excellent adsorption of glycoproteins by the microspheres, which are attributed to the well‐defined boronic acid brushes on the microsphere surfaces. Furthermore, a solid‐phase extraction microcolumn filled with the microspheres was used to efficiently enrich glycopeptides from enzymatic hydrolysates from human serum samples. The mass spectrometry results demonstrated that the method is suitable for the separation and enrichment of glycopeptides/glycoproteins from complex biological samples.  相似文献   

11.
In this study, novel monodisperse restricted access media‐molecularly imprinted polymers were successfully prepared by surface initiated reversible addition‐fragmentation chain transfer polymerization using monodisperse crosslinked poly (glycidyl methacrylate‐co‐ethylene glycol dimethacrylate) microspheres as the carrier and acryloyl chloride‐modified β‐cyclodextrin as the hydrophilic functional monomer. The surface morphology, protein exclusion, and adsorption properties of the molecularly imprinted polymers were investigated. The results show that the material has excellent monodispersity and hydrophilicity, and simultaneously exhibit high adsorption capacity, fast binding kinetics, high selectivity, and significant thermal stability. The molecularly imprinted polymers as dispersive solid‐phase extraction adsorbent combined with reversed‐phase high‐performance liquid chromatography was used to selectively enrich, separate, and analyze trace 17β‐estradiol in milk samples. The recovery of 17β‐estradiol is 88–95% with relative standard deviation of <4%, and the limits of detection and quantification of this method are 2.08 and 9.29 µg/L, respectively. The novel restricted access media‐molecularly imprinted polymer adsorbents provide an effective method for the selective extraction and detection of 17β‐estradiol directly from complex samples.  相似文献   

12.
An ion‐exchanger with polyanionic molecular brushes was synthesized by a “grafting from” route based on “surface‐controlled reversible addition‐fragmentation chain transfer polymerization” (RAFT). The RAFT agent, PhC(S)SMgBr was covalently attached to monodisperse‐porous poly(dihydroxypropyl methacrylate‐co‐ethylene dimethacrylate), poly(DHPM‐co‐EDM) particles 5.8 μm in size. The monomer, 3‐sulfopropyl methacrylate (SPM), was grafted from the surface of poly(DHPM‐co‐EDM) particles with an immobilized chain transfer agent by the proposed RAFT protocol. The degree of polymerization of SPM (i. e. the molecular length of the polyanionic ligand) on the particles was controlled by varying the molar ratio of monomer/RAFT agent. The particles carrying polyanionic molecular brushes with different lengths were tested as packing material in the separation of proteins by ion exchange chromatography. The columns packed with the particles carrying relatively longer polyanionic ligands exhibited higher separation efficiency in the separation of four proteins. Plate heights between 130–200 μm were obtained. The ion‐exchanger having poly‐(SPM) ligand with lower degree of polymerization provided better peak‐resolutions on applying a salt gradient with higher slope. The molecular length and the ion‐exchanger group content of polyionic ligand were adjusted by controlling the degree of polymerization and the grafting density, respectively. This property allowed control of the separation performance of the ion‐exchanger packing.  相似文献   

13.
For the first time, large-area surface-enhanced Raman scattering sensing active substrates using porous polymer monolithic layers have been successfully prepared. Our approach includes a simple photoinitiated polymerization process using glycidyl methacrylate and ethylene dimethacrylate in a glass mold, followed by a chemical reaction of the epoxy functionalities leading to thiols, and the attachment of preformed gold nanoparticles. We demonstrated that this very simple process produced uniform and reproducible large area surfaces that significantly enhance sensitivity of Raman spectroscopy. Experiments were also carried out that confirmed preferential adsorption of living bacteria Escherichia coli from a very dilute solution on the surface of the monolithic layer, and immediate detection of the captured microorganisms using the SERS spectrum.  相似文献   

14.
Both the separation behavior and the structure of a polymer monolith column depends on both the reaction solution composition and the polymerization conditions. In photoinitiated low‐temperature polymerization, polymerization temperature, irradiation intensity, and polymerization time were key factors to control the monolith characteristics. In this study, the effect of polymerization time on the chromatographic, material, and chemical characteristics of poly(butyl methacrylate‐co‐ethylene dimethacrylate) monoliths was studied using pyrolysis‐gas chromatography, Raman spectroscopy, inverse size exclusion chromatography, scanning electron microscopy, and chromatographic methods. Both butyl methacrylate and ethylene dimethacrylate monomers were incorporated into the monolith as the polymerization time increased, and it resulted in increases in both the flow resistance (decrease in both permeability and total/through pore porosities) and retention factors. The longer polymerization time led to lower relative amounts of free methacrylate functional groups in the monolith, i.e. cross‐linking was enhanced. The increase of the polymerization time from 8 to 12 min significantly reduced the separation efficiency for the retained analyte, whereas an increase in the fraction of the mesoporosity was observed.  相似文献   

15.
A new approach to the preparation of enantioselective porous polymer monolithic columns with incorporated chiral metal–organic framework for nano‐liquid chromatography has been developed. While no enantioseparation was achieved with monolithic poly(4‐vinylpyridine‐co‐ethylene dimethacrylate) column, excellent separations of both enantiomers of (±)‐methyl phenyl sulfoxide were achieved with its counterpart prepared after admixing metal–organic framework [Zn2(benzene dicarboxylate)(l‐lactic acid)(dmf)], which is synthesized from zinc nitrate, l ‐lactic acid, and benzene dicarboxylic acid in the polymerization mixture. These novel monolithic columns combined selectivity of the chiral framework with the excellent hydrodynamic properties of polymer monoliths, may provide a great impact on future studies in the field of chiral analysis by liquid chromatography.  相似文献   

16.
A new thermally switchable molecularly imprinted monolith for the selective capture and release of proteins has been designed. First, a generic poly(glycidyl methacrylate‐co‐ethylene dimethacrylate) monolith reacted with ethylenediamine followed by functionalization with 2‐bromoisobutyryl bromide to introduce the initiator for atom transfer radical polymerization. Subsequently, a protein‐imprinted poly(N‐isopropylacrylamide) layer was grafted onto the surface of the monolithic matrix by atom transfer radical polymerization. Scanning electron microscopy and energy‐dispersive X‐ray spectroscopy of the cross‐sections of imprinted monoliths confirmed the formation of dense poly(N‐isopropylacrylamide) brushes on the pore surface. The imprinted monolith exhibited high specificity and selectivity toward its template protein myoglobin over competing proteins and a remarkably large maximum adsorption capacity of 1641 mg/g. Moreover, this “smart” imprinted monolith featured thermally responsive characteristics that enabled selective capture and easy release of proteins triggered only by change in temperature with water as the mobile phase and avoided use of stronger organic solvents or change in ionic strength and pH.  相似文献   

17.
Monodisperse iron oxide nanocrystals and organic solvents were utilized as coporogens in monolithic poly(glycidyl methacrylate‐co‐ethylene glycol dimethacrylate) capillary columns to afford stationary phases with enhanced electrochromatographic performance of small molecules. While the conventional monoliths using organic solvents only as a porogen exhibited poor resolution (Rs) <1.0 and low efficiency of 40 000–60 000 plates/m, addition of a small amount of nanocrystals to the polymerization mixture provided increased resolution (Rs > 3.0) and high efficiency ranged from 60 000 to 100 000 plates/m at the same linear velocity of 0.856 mm/s. It was considered that the mesopores introduced by the nanocrystals played an important role in the improvement of the monolith performance. This new strategy expanded the application range of the hydrophobic monoliths in the separation of polar alkaloids and narcotics. The successful applications demonstrated that the glycidyl methacrylate based monoliths prepared by using nanocrystal template are a good alternative for enhanced separation efficiency of small molecules.  相似文献   

18.
In this study, we demonstrate the preparation of a macroporous monolithic column containing anchored silver nanoparticles and its use for the elimination of excess radioiodine from the radiolabeled pharmaceutical. The poly(glycidyl methacrylate‐co‐ethylene dimethacrylate) monolith was first functionalized with cystamine and the free thiol groups liberated by reaction with borohydride. In‐house‐prepared silver nanoparticles were then attached by interaction with the surface thiols. The deiodization process was demonstrated with the commonly used radiopharmaceutical m‐iodobenzylguanidine labeled with radionuclide iodine‐125.  相似文献   

19.
Thin films were fabricated layer‐by‐layer (LbL) via ionic bonds formed between a cationic ionomer and an anionic ionomer, which were produced via proton transfer from poly(styrene‐co‐styrenesulfonic acid) to poly(methyl methacrylate‐co‐4‐vinylpyridine) in an organic solvent, tetrahydrofuran. Ionic contents of the ionomers were very low down to 5.6 mol %, much lower than usual polyelectrolytes. The build up of the LbL films was demonstrated by UV/vis spectroscopy: the absorbance of the phenyl rings in styrene residues increased with the number of depositions (thus the number of layers). Transmission electron microscopy observation of strained thin films showed unique deformation mode, involving many bands that developed both in the parallel and perpendicular directions to the stress axis. This is quite different from the deformation modes seen for ionomer blend films and for coextruded polystyrene/poly(methyl methacrylate) multilayer tapes. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 50: 101–105, 2012  相似文献   

20.
Metal‐organic frameworks consisting of amino‐modified MIL‐101(M: Cr, Al, and Fe) crystals have been synthesized and subsequently incorporated to glycidyl methacrylate monoliths to develop novel stationary phases for nano‐liquid chromatography. Two incorporation approaches of these materials in monoliths were explored. The metal‐organic framework materials were firstly attached to the pore surface through reaction of epoxy groups present in the parent glycidyl methacrylate‐based monolith. Alternatively, NH2‐MIL‐101(M) were admixed in the polymerization mixture. Using short time UV‐initiated polymerization, monolithic beds with homogenously dispersed metal‐organic frameworks were obtained. The chromatographic performance of embedded UV‐initiated composites was demonstrated with separations of polycyclic aromatic hydrocarbons and non‐steroidal anti‐inflammatory drugs as test solutes. In particular, the incorporation of the NH2‐MIL‐101(Al) into the organic polymer monoliths led to an increase in the retention of all the analytes compared to the parent monolith. The hybrid monolithic columns also exhibited satisfactory run‐to‐run and column‐to‐column reproducibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号