首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel magnetic sulfonated covalent organic polymer was prepared for magnetic solid-phase extraction of protoberberine alkaloids. The magnetic sulfonated covalent organic polymer was rapidly synthesized under mild conditions. The physicochemical properties of the prepared materials were characterized by Fourier-transform infrared spectrometry, transmission electron microscopy, and X-ray photoelectron spectroscopy. Several extraction parameters were systematically investigated, including desorption time, pH of sample solution, acetonitrile content, acetic acid content in the eluent, extraction time, and sample volume. By coupling magnetic solid-phase extraction and high-performance liquid chromatography, an efficient and sensitive method for the extraction and determination of protoberberine alkaloids in complex samples was developed. The proposed method showed great linearity (r > 0.9989), low limits of detection (0.2–0.3 ng/ml), and high precision (relative standard deviations ≤ 5.74%). The proposed method was further applied to the analysis of protoberberine alkaloids in Cortex phellodendri and human plasma samples. The recoveries were 91.50%–110.31% with relative standard deviations less than 6.63% in Cortex phellodendri and 96.12%–111.20% with relative standard deviations lower than 5.56% in plasma samples.  相似文献   

2.
In this work, we developed a novel molecularly imprinted solid‐phase microextraction with capillary electrophoresis method for the selective extraction and determination of protoberberines in complicated samples. The imprinted monolith was prepared in a micropipette tip‐based device by using acrylamide as the functional monomer, ethyleneglyoldimethacrylate as the cross‐linker and dimethylsulfoxide as the porogen, and exhibited an imprinting factor of 2.41 to berberine, 2.36 to palmatine and 2.38 to jatrorrhizine. Good capillary electrophoresis separation was achieved by using 20 mM phosphate buffer at pH 7 as running buffer with the addition of organic modifier of 10% methanol. Parameters such as sample pH value, sample flow rate and sample volume were investigated for imprinted monolith‐based solid‐phase microextraction. An imprinted solid‐phase microextraction with capillary electrophoresis method was developed, the method showed a wide linear range (0.3–50 μg/mL), good linearity (R2 ≥ 0.9947) and good reproducibility (relative standard deviations ≤ 0.73%), the limit of detection was as low as 0.1 μg/mL, which was lower than some reported methods based on capillary electrophoresis for protoberberines. The method has been applied for determination of three common protoberberines in Cortex Phellodendri Chinensis, by using a molecularly imprinted monolith as the selective sorbent, most of the matrices in the Cortex Phellodendri Chinensis sample were removed and three protoberberines were selectively enriched and well determined.  相似文献   

3.
A new dihydroberberine alkaloid, 7,8‐dihydro‐8‐methoxyberberine ( 1 ), along with six known compounds including two dihydroberberine alkaloids, 7,8‐dihydro‐8‐hydroxyberberine ( 2 ) and oxyberberine ( 3 ) and four protoberberine alkaloids, berberine ( 4 ), palmatine ( 5 ), jatrorrhizine ( 6 ) and columbamine ( 7 ), were isolated from the stems of Mahonia japonica. These compounds were characterized and identified by physical and spectral evidence.  相似文献   

4.
The computer‐assisted design and synthesis of molecularly imprinted polymers for the simultaneous capture of six carbamate pesticides from environmental water are reported in this work. The quantum mechanical computational approach was employed to design the molecularly imprinted polymers with carbofuran as template. The interaction energies between the template molecule and different functional monomers in various solvents were calculated to assist in the selection of the functional monomer and porogen. The optimised molecularly imprinted polymer was subsequently used as a class‐selective sorbent in solid‐phase extraction for pre‐concentration and determination of carbamates from environmental water. The parameters influencing the extraction efficiency of the molecularly imprinted solid‐phase extraction procedure were systematically investigated to facilitate the class‐selective extraction. For the proposed method, linearity was observed over the range of 2–500 ng/mL with the correlation coefficient ranging from 0.9760 to 1.000. The limits of detection ranged from 0.2 to 1.2 ng/mL, and the limit of quantification was 4 ng/mL. These results confirm that computer‐assisted design is an effective evaluation tool for molecularly imprinted polymers synthesis, and that molecularly imprinted solid‐phase extraction can be applied to the simultaneous analysis of carbamates in environmental water.  相似文献   

5.
A sensitive and specific liquid chromatography–electrospray ionization–tandem mass spectrometric (LC‐ESI‐MS/MS) method was developed and validated to simultaneously quantify 11 active compounds (coptisine, jatrorrhizine, berberine, palmatine, baicalin, baicalein, wogonoside, wogonin, rhein, emodin and aloeemodin) from Xiexin decoction (XXD) in rat plasma. Plasma samples extracted by a single‐step protein precipitation procedure were separated using the gradient mode on a Dikma ODS‐C18 column. Selected reaction monitoring scanning was employed for quantification with switching electrospray ion source polarity between positive and negative modes in a single run. Calibration curves offered satisfactory linearity (r > 0.995) at linear range of 0.47–60 ng/mL for coptisine, jatrorrhizine, berberine and palmatine, 15–1930 ng/mL for baicalin, 20–2560 ng/mL for baicalein, 14–1790 ng/mL for wogonoside, 0.57–72.8 ng/mL for wogonin, 10–1280 ng/mL for rhein, 0.6–76.8 ng/mL for emodin and 3.0–384 ng/mL for aloeemodin. The intra‐ and interday precisions were less than 10.2% in terms of relative standard deviation (RSD), and the accuracies were within ±10.84% in terms of relative error (RE). It was successfully applied to the evaluation of pharmacokinetics after single oral doses of XXD were administered to rats. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
A novel molecularly imprinted solid‐phase extraction with spectrofluorimetry method has been developed for the selective extraction of telmisartan from human urine. Molecularly imprinted polymers were prepared by a noncovalent imprinting approach through UV‐radical polymerization using telmisartan as a template molecule, 2‐dimethylamino ethyl methacrylate as a functional monomer, ethylene glycol dimethacrylate as a cross‐linker, N,N‐azobisisobutyronitrile as an initiator, chloroform as a porogen. Molecularly imprinted polymers and nonimprinted control polymer sorbents were dry‐packed into solid‐phase extraction cartridges, and eluates from cartridges were analyzed using a spectrofluorimeter. Limit of detection and limit of quantitation values were 11.0 and 36.0 ng/mL, respectively. A very high imprinting factor (16.1) was achieved and recovery values for the telmisartan spiked in human urine were in the range of 76.1–79.1%. In addition, relatively low within‐day (0.14–1.6%) and between‐day (0.11–1.31%) precision values were obtained. Valsartan was used to evaluate the selectivity of sorbent as well. As a result, a sensitive, selective, and simple molecularly imprinted solid‐phase extraction with spectrofluorimetry method has been developed and successfully applied to the direct determination telmisartan in human urine.  相似文献   

7.
In this study, electrospray ionization mass spectrometry (ESI‐MS) was used to investigate the binding interaction of six alkaloids with parallel intermolecular G‐quadruplex [d(TGGGGT)]4, and five alkaloids including berberine, jatrorrhizine, palmatine, tetrandrine, and fangchinoline showed complexation with the target DNA. Relative binding affinities were estimated on the basis of mass spectrometric data. The slight differences in chemical structures of berberine, jatrorrhizine, and palmatine had little influence on their binding affinities to [d(TGGGGT)]4. Tetrandrine and fangchinoline selectively bound to [d(TGGGGT)]4 versus duplex DNA. Collision‐induced dissociation (CID) experiments showed that the complexes with berberine, jatrorrhizine, and palmatine dissociated via strand separation and ligand retaining in the strand while the complexes with tetrandrine and fangchinoline were dissociated via ligand elimination. A comparison of dissociation patterns in CID experiments of complexes with the alkaloids to those with the traditional G‐quadruplex DNA binders suggested an end‐stacking binding mode for tetrandrine and fangchinoline and an intercalation binding mode for berberine, jatrorrhizine, and palmatine to the target DNA. The current work not only provides deep insight into alkaloid/[d(TGGGGT)]4 complexes and useful guidelines for design of efficient anticancer agents but also demonstrates the utility of ESI‐MS as a powerful tool for evaluating interaction between ligand and quadruplex DNA. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
A simple, rapid, reproducible, and universal non-aqueous capillary electrophoresis method has been developed for the separation and determination of three major active protoberberine alkaloids including berberine, palmatine, and jatrorrhizine within 7 min. The effects of the concentrations of acetic acid and electrolyte, the ratio of organic solvent, and the applied voltage on the separation were investigated. The optimum running buffer was composed of 50 mM ammonium acetate, 0.5% (v/v) acetic acid, and 10% (v/v) acetonitrile in methanol. The applied voltage was 18 kV. The analytes were detected by UV at 214 nm. The linearities between peak areas and the concentrations of the analytes were also investigated, and they exhibit excellent linear behavior over the concentration ranges (correlation coefficients: 0.9975-0.9986). The method was successfully applied to determine the three alkaloids in several families of herbal drugs (Rhizoma Coptidis, Cortex Berberidis, Cortex Phellodendri, Herba Chelidonii, Caulis Mahoniae) and their relevant medicinal preparations for the first time, and the recoveries of the three constituents ranged between 95.6-103.2% for berberine, 97.5-103.3% for palmatine, and 96.1 -103.6% for jatrorrhizine.  相似文献   

9.
A magnetic molecularly imprinted fluorescent sensor for the sensitive and convenient determination of ciprofloxacin or norfloxacin in human urine was synthesized and characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X‐ray diffraction, ultraviolet/visible spectroscopy, and fluorescence spectroscopy. Both cadmium telluride quantum dots and ferroferric oxide nanoparticles are introduced into the polymer for the rapid separation and detection of the target molecules. The synthesized molecularly imprinted polymers were applied to detect ciprofloxacin or its structural analog norfloxacin in human urine with the detection limit 130 ng/mL. A computational study was developed to evaluate the template–monomer geometry and interaction energy in the polymerization mixture to determine the reaction molar ratio of the template and monomer molecules.  相似文献   

10.
Thermo‐responsive magnetic molecularly imprinted polymers were prepared by simple surface molecular imprinting polymerization for the selective adsorption and enrichment of formononetin from Trifolium pretense by temperature regulation. Using formononetin as a template, N‐isopropylacrylamide as the thermo‐responsive functional monomer, and methacrylic acid as an assisting functional monomer, the polymers were synthesized on the surface of the magnetic substrate. The results show that imprinted polymers attained controlled adsorption of formononetin in response to the temperature change, with large adsorption capacity (16.43 mg/g), fast kinetics (60 min) and good selectivity at 35°C compared with that at 25 and 45°C. The selectivity experiment indicated that the materials had excellent recognition ability for formononetin and the selectivity factors were between 1.32 and 2.98 towards genistein and daidzein. The excellent linearity was attained in the range of 5–100 μg/mL, with low detection limits and low quantitation limits of 0.017 and 0.063 μg/mL, respectively. Furthermore, the thermo‐responsive magnetic molecularly imprinted polymers were successfully utilized for enriching and purifying formononetin from Trifolium pretense. The analytical results indicate that the imprinted polymers are promising materials for selective identification and enrichment of formononetin in complicated herbal medicines by simple temperature‐responsive regulation.  相似文献   

11.
A rapid, sensitive and reliable quantitative method based on ultra‐high performance liquid chromatography coupled with Q‐Exactive Orbitrap tandem mass spectrometry was developed for simultaneous determination of berberine, berberrubine, palmatine, jatrorrhizine, columbamine, baicalin, baicalein and wogonin in rat plasma after oral administration with Yan‐Ke‐Ning‐Tablet (YKNT). After precipitation with acetonitrile, the plasma samples were separated on a reverse‐phase C18 column with 1 mm ammonium acetate containing 0.2% acetic acid–acetonitrile as mobile phase. Calibration curves showed good linearity (r > 0.9983) over the tested concentration ranges of 0.5–200 ng/mL for berberine, berberrubine, palmatine, jatrorrhizine and columbamine, and 1–300 ng/mL for baicalin, baicalein and wogonin. The precision (relative standard deviation) at three different concentration levels was <12.15% and the accuracy (relative error) ranged from ?8.24 to 10.85%. No matrix effects were observed with matrix effect value ranging from 89.23 to 107.68%. The extraction recovery was in the range of 82.34–92.31%. The validated assay was further successfully applied to the pharmacokinetic study of these components after oral administration of YKNT. The present study provides the pharmacokinetic profiles of major bioactive components found in YKNT, and provides valuable information regarding the chemical components that were absorbed into plasma, which will be helpful for understanding the therapeutic effects of YKNT.  相似文献   

12.
LIF detection is one of the most sensitive detection methods for CE. However, its application is limited because the analyte is usually required to be derivatized with a fluorescent label. As a result, LIF is seldom used to analyze active ingredients in plants. In this work, we introduce a rapid, simple, and sensitive method of nonaqueous CE (NACE) coupled with laser-induced native fluorescence detection for the simultaneous analysis of berberine, palmatine, and jatrorrhizine. This method skillfully utilizes the native fluorescence of these alkaloids and requires no troublesome fluorescent derivatization. As these alkaloids can fluoresce to some degree, they were simply detected by a commercially available 488 nm Ar+ laser. The native fluorescence of the analytes was greatly enhanced by nonaqueous media. Compared with the reported UV detection method, much lower LOD was achieved (6.0 ng/mL for berberine, 7.5 ng/mL for palmatine, and 380 ng/mL for jatrorrhizine). This method was successfully applied to analyze berberine, palmatine, and jatrorrhizine in two Chinese herbal medicines, Rhizoma coptidis and Caulis mahoniae.  相似文献   

13.
A novel type of magnetic molecularly imprinted polymer was prepared for the selective enrichment and isolation of chelerythrine from Macleaya cordata (Willd) R. Br. The magnetic molecularly imprinted polymers were prepared using functional Fe3O4@SiO2 as a magnetic support, chelerythrine as template, methacrylic acid as functional monomer, and ethylene glycol dimethacrylate as cross‐linker. Density functional theory at the B3LYP/6‐31G (d, p) level with Gaussian 09 software was applied to calculate the interaction energies of chelerythrine, methacrylic acid and the complexes formed from chelerythrine and methacrylic acid in different ratios. The structural features and morphology of the synthesized polymers were characterized by using Fourier transform infrared spectroscopy, X‐ray diffraction, transmission electron microscopy, and vibration sample magnetometry. Adsorption experiments revealed that the magnetic molecularly imprinted polymers possessed rapid kinetics, high selectivity, and a higher binding capacity (7.96 mg/g) to chelerythrine than magnetic molecularly non‐imprinted polymers (2.36 mg/g). The adsorption process was in good agreement with the Langmuir adsorption isotherm and pseudo‐second‐order kinetics models. Furthermore, the magnetic molecularly imprinted polymers were successfully employed as adsorbents for the extraction and enrichment of chelerythrine from Macleaya cordata (Willd) R. Br. The results indicated that the magnetic molecularly imprinted polymers were suitable for the selective adsorption of chelerythrine from complex samples such as natural medical plants.  相似文献   

14.
In this work, core/shell magnetic molecularly imprinted polymer nanoparticles were synthesized for extraction and pre‐concentration of valsartan from different samples and then it was measured with high‐performance liquid chromatography. For preparation of molecularly imprinted polymer nanoparticles, Fe3O4 nanoparticles were coated with tetraethyl orthosilicate and then functionalized with 3‐(trimethoxysilyl) propyl methacrylate. In the next step, molecularly imprinted polymer nanoparticles were synthesized under reflux and distillation conditions via polymerization of methacrylic acid, valsartan (as a template), azobisisobutyronitrile and ethylene glycol dimethacrylate as cross linking. The properties of molecularly imprinted polymer nanoparticle were investigated by FTIR spectroscopy, field emission scanning electron microscopy, and X‐ray diffraction. Box‐Behnken design with the aid of desirability function was used for optimizing the effect of variables such as the amounts of molecularly imprinted polymer nanoparticles, time of sonication, pH, and volume of methanol on the extraction percentage of valsartan. According to the obtained results, the affecting variables extraction condition were set as 10 mg of adsorbent, 16 min for sonication, pH = 5.5 and 0.6 mL methanol. The obtained linear response (r2 > 0.995) was in the range of 0.005–10 µg/mL with detection limit 0.0012 µg/mLand extraction recovery was in the range of 92–95% with standard deviation less than 6% (n = 3).  相似文献   

15.
This work reports the preparation of molecularly imprinted polymer particles for the selective extraction and determination of four benzophenones from aqueous media. The polymer was prepared by using 4‐vinylpridine as functional monomer, ethylene glycol dimethacrylate as cross‐linker, acetonitrile as porogenic solvent and 2,2’,4,4’‐tetrehydroxybenzophenone as template. Good specific adsorption capacity (Qmax = 27.90 μmol/g) for 2,2’,4,4’‐tetrehydroxybenzophenone was obtained in the sorption experiment and good class selectivity for 2,2’,4,4’‐tetrehydroxybenzophenone, 2,4‐dihydroxybenzophenone, 2,2’‐dihydroxy‐4‐methoxybenzophenone, 2,2’‐dehydroxy‐4,4’‐dimethoxybenzophenone was demonstrated by the chromatographic evaluation experiment. Factors affecting the extraction efficiency of the molecularly imprinted solid‐phase extraction procedure were investigated systematically. An accurate and sensitive analytical method based on the molecularly imprinted solid‐phase extraction coupled with high‐performance liquid chromatography and diode array detection has been successfully developed for the simultaneous determination of four benzophenones from tap water and river water with method detection limits of 0.25–0.72 ng/mL. The recoveries of benzophenones for water samples at two spiking levels (500 and 5000 ng/mL for each benzophenone) were in the range of 86.9–103.3% with relative standard deviations (n = 3) below 9.2%.  相似文献   

16.
Berberine alkaloids, a group of protoberberine alkaloids under the classification of isoquinoline alkaloids, include berberine, coptisine, palmatine, columbamine, dehydrocorydaline, jatrorrhizine, and epiberberine from natural sources. Studies have shown that berberine alkaloids have various pharmacological functions, such as antibacterial, antiviral, blood pressure‐lowering, hypoglycaemic, antiarrhythmia, and anticancer effects. Therefore, it is worthwhile to develop analytical methods to investigate the pharmacokinetics and activity mechanisms of berberine alkaloids and to study berberine alkaloids more comprehensively. Current analytical methods for berberine alkaloids include liquid chromatography, thin‐layer chromatography, ultraviolet spectroscopy, capillary electrophoresis, and gas chromatography. The most widely used detection method is mass spectrometry. In order to provide a systematic and comprehensive summary and to serve as a reference for the future pharmacokinetics studies and analysis of berberine alkaloids, analytical methods for natural berberine alkaloids that have been used in the past ten years are reviewed here.  相似文献   

17.
A sodium dodecyl sulfate sensitized switchable solvent liquid‐phase microextraction method was developed and applied to the preconcentration of active alkaloids in Rhizoma coptidis followed by high performance liquid chromatography determination. Before extraction, nonionic triethylamine was converted to its cationic form in the presence of carbon dioxide. Then, the ionic solvent carrying target analytes was once more reverted to its nonionic form by adding sodium hydroxide, as well as phase separation and analytes enrichment were realized simultaneously. Several parameters affecting the approach, such as concentration of sodium dodecyl sulfate, extraction solvent volume, sodium hydroxide concentration, sample phase pH, injection solvent type, and extraction time, were investigated and optimized. The possible microextraction mechanism of double micelle supramolecular inclusion was explored. Under the optimum conditions, the enrichment factors of four protoberberine alkaloids were from 101.8 to 152.0. The linear ranges (with r≥ 0.990) were 0.032–4.23, 0.031–4.33, 0.0026–10.04, and 0.0013–4.13 μg/mL for epiberberine, coptisine, palmatine, and berberine, respectively. The detection limits were in the range of 0.16–0.32 ng/mL. Satisfactory accuracies (recoveries 98.8–104.6%) and precisions (RSDs 1.9–10.9%) were also obtained. The results showed that the approach is rapid, effective, eco‐friendly, and easy‐to‐handle for the enrichment and detection of active alkaloids in Rhizoma coptidis.  相似文献   

18.
In this study, we developed a simple and selective spin column extraction technology utilizing hydrophilic molecularly imprinted polymers as the sorbents for extracting nitrophenol pollutants in water samples (the East Lake, the Yangtze River, and wastewater). The whole procedure was achieved by centrifugation of the spin column, and multiple samples were simultaneously processed with a low volume of solvent and without evaporation. Under the optimized condition, recoveries of nitrophenol compounds on the spin column packed with hydrophilic molecularly imprinted polymers ranged from 87.3 to 92.9% and an excellent purification effect was obtained. Compared with activated carbon, multi‐walled carbon nanotubes, LC‐C18 sorbents, hydrophilic molecularly imprinted polymers exhibited a highly selective recognition ability for nitrophenol compounds and satisfactory sample extraction efficiency. Subsequently, the spin column extraction coupled with high‐performance liquid chromatography was established, which was found to be linear in the range of 2–1000 ng/mL for 2,4‐dinitropehnol and 2‐nitrophenol, and 6–1000 ng/mL for 4‐nitrophenol with correlation coefficients greater than 0.998. The detection limits ranged from 0.3–0.5 ng/mL. It is shown that the proposed method can be used for the determination of trace nitrophenol pollutants in complex samples, which is not only beneficial for water quality analysis but also for environmental risk assessment.  相似文献   

19.
A novel oil‐in‐salt liquid‐phase microextraction was developed and introduced for the extraction and concentration of the trace levels of active alkaloids in Coptis chinensis prior to being analyzed by high‐performance liquid chromatography with ultraviolet detection. Also, the oil‐in‐salt extraction mechanism was analyzed, the enrichment factor and extraction recovery were redefined, and the proposed method was compared with other methods. In the approach, the mixed solvent of pentanol/octanol (6:4, v/v) and NaCl (20% w/v) are immobilized on the permutite surface in turn to form oil‐in‐salt double membranes, through which the target analytes can be molecularized though salting‐out effect and be extracted by organic solvent. The main parameters affecting the approach were investigated and optimized. Under the optimized conditions, the enrichment factors of the analytes were 30–117, the linear ranges were 0.002–2 μg/mL for jatrorrhizine, coptisine, and palmatine, and 0.001–3 μg/mL for berberine (r 2 ≥ 0.9923). The limits of detection were less than 1 ng/mL. Satisfactory recoveries (84.3%–120.3%) and precision (0.9%–7.5%) were also obtained. These results confirm that the approach is a simple and reliable sample pretreatment procedure and allows for the quantification of active alkaloids in C. chinensis at actual concentration levels.  相似文献   

20.
A dual responsive molecularly imprinted polymer sensitive to both photonic and magnetic stimuli was successfully prepared for the detection of four sulfonamides in aqueous media. The photoresponsive magnetic molecularly imprinted polymer was prepared by surface imprinting polymerization using superparamagnetic Fe3O4 nanoparticles functionalized with a silica layer as a support, water‐soluble 4‐[(4‐methacryloyloxy)phenylazo]benzenesulfonic acid as the functional monomer, and sulfadiazine as the template. The magnetic molecularly imprinted polymers showed specific affinity to sulfadiazine and its structural analogs in aqueous media. Upon alternate irradiation at 365 and 440 nm, the quantitative bind and release of the four sulfonamides by magnetic molecularly imprinted polymers occurred. Furthermore, the prepared magnetic molecularly imprinted polymers were used as solid‐phase extraction material selectively extracted the four sulfonamides from water samples with good recoveries. Thus, a simple, convenient, and reliable detection method for sulfonamides in the environment based on responsive magnetic molecularly imprinted polymers was successfully established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号