首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A complete and consistent set of 60 Benson group additive values (GAVs) for oxygenate molecules and 97 GAVs for oxygenate radicals is provided, which allow to describe their standard enthalpies of formation, entropies and heat capacities. Approximately half of the GAVs for oxygenate molecules and the majority of the GAVs for oxygenate radicals have not been reported before. The values are derived from an extensive and accurate database of thermochemical data obtained by ab initio calculations at the CBS‐QB3 level of theory for 202 molecules and 248 radicals. These compounds include saturated and unsaturated, α‐ and β‐branched, mono‐ and bifunctional oxygenates. Internal rotations were accounted for by using one‐dimensional hindered rotor corrections. The accuracy of the database was further improved by adding bond additive corrections to the CBS‐QB3 standard enthalpies of formation. Furthermore, 14 corrections for non‐nearest‐neighbor interactions (NNI) were introduced for molecules and 12 for radicals. The validity of the constructed group additive model was established by comparing the predicted values with both ab initio calculated values and experimental data for oxygenates and oxygenate radicals. The group additive method predicts standard enthalpies of formation, entropies, and heat capacities with chemical accuracy, respectively, within 4 kJ mol?1 and 4 J mol?1 K?1 for both ab initio calculated and experimental values. As an alternative, the hydrogen bond increment (HBI) method developed by Lay et al. (T. H. Lay, J. W. Bozzelli, A. M. Dean, E. R. Ritter, J. Phys. Chem.­ 1995 , 99, 14514) was used to introduce 77 new HBI structures and to calculate their thermodynamic parameters (ΔfH°, S°, Cp°). The GAVs reported in this work can be reliably used for the prediction of thermochemical data for large oxygenate compounds, combining rapid prediction with wide‐ranging application.  相似文献   

2.
The structure-dependent energies of organic radicals, cations, and anions are deduced from their calculated relative enthalpies and are compared to the relative enthalpies of their parent compounds. The use of relative enthalpies to express the relative energies of organic radicals, cations, and anions proved to be as fruitful as in the case of their parent organic compounds. The same energy-determining structural factors may have stronger, weaker, or even opposite effects in the radicals, cations, or anions than those in their parent molecules.  相似文献   

3.
In this study, a series of experiments were conducted to examine the feasibility of the gas chromatographic approach for the quantification of several odorous volatile organic compounds (VOCs) in environmental samples which included methyl ethyl ketone, isobutyl alcohol, methyl isobutyl ketone, and butyl acetate plus benzene, toluene, and xylene (namely, BTX). The gaseous working standards (WS) of seven compounds were initially calibrated at varying concentration ranges by direct injection (DI) into GC injector. The detection properties of these compounds were then tested with a thermal desorber (TD). The relative sensitivities of three aromatic VOCs differed greatly between DI and TD methods. In contrast, four polar VOCs tend to consistently exhibit relative enhancement in response factors with increasing molecular mass (an exception of butyl acetate), regardless of method. The TD-based analysis was reliable enough to detect all target VOCs below their odor threshold values with their detection limit (DL) values. This TD method, when tested against a number of environmental samples collected from several industrial facilities, confirmed the presence of these odorous VOCs at a wide concentration range.  相似文献   

4.
基于极性叠加原理,在成功设计烷烃异构体和多氯代烷烃生成焓计算新方法的基础上,设计了一种计算多元醇异构体生成焓的新方法,并合理地假定任一异构体的原子化焓等于三种键(C-C、C-H和C-O-H键)的键能、极性叠加能项以及氢键能项的加和.用这一模型拟合24种原子化焓数据,得到了标准生成焓的估算公式.为了检验预测的精确性,又设计了一种预测方法,使用在排除被预测的化合物条件下回归得到的参数,预测该化合物的生成焓.按这种方法,预测了24种异构体的生成焓.通过该5参数预测的相对于实验值的各种误差(平均绝对误差、均方根误差和最大绝对误差)不仅比7参数的基团法预测的对应误差小得多,而且比相应实验数据的误差还要小.与键加和法比较,该方法的模型包含了极性叠加能和氢键能量,该两项代表了主要的非键相互作用能,表征了不同异构体的结构差异,并大大减少了参数.  相似文献   

5.
The standard molar enthalpies of combustion of 2-aminobenzothiazole (2AB), 2-amino-4-methyl-benzothiazole (2A4MB), and 2-amino-6-methyl-benzothiazole (2A6MB) were determined in the crystalline phase at T = 298.15 K using a rotating-bomb combustion calorimeter. The molar energies of combustion of these compounds were found to be: (−4273.6 ± 0.9), (−4896.9 ± 1.1), and (−4906.9 ± 1.2) kJ · mol−1, respectively. From these values, the corresponding standard molar enthalpies of formation in the solid phase were obtained as: (59.55 ± 1.28), (2.71 ± 1.50), and (13.53 ± 1.53) kJ · mol−1, respectively. The enthalpies of formation in the gas phase were determined using the experimental enthalpies of formation in the solid phase and predicted values of the enthalpies of sublimation. Additionally, the enthalpies of formation in the gas phase were calculated by means of the Gausian-4 theory, using several gas-phase working reactions, and were compared with those found using the predicted enthalpies of sublimation.  相似文献   

6.
预测三元系超额焓的一种新方法   总被引:6,自引:0,他引:6  
提出一种预测三元系超额焓的新方法。该方法利用改进的立方状态方程--FRKS方程,并以二元互作用参数函数代替单一数值的二地互作用参数,为计算体系提供随状态变化的二元互作用参数数值。对十二个非理想三元系及其组分二元素的计算结果表明,该方法明显提高了二元系超额焓的拟合精度,从而在不引入任何三元参数的条件下较好地改进了三元系超额焓的预测。  相似文献   

7.
A headspace solid-phase microextraction (HS-SPME) and gas chromatography (GC) coupled to mass spectrometry (MS) method was developed to identify and quantify 14 volatile oak compounds in aged red wines. The most important HS-SPME variables were optimised by experimental design technique in order to improved the extraction process. The selected conditions were: 10 mL of sample in 20 mL sealed vials with addition of 30% of sodium chloride (saturated solution), divinylbenzene-carboxen-polydimethylsiloxane (DVB-CAR-PDMS) fibre, 10 min of pre-incubation time, 70 degrees C of temperature and 60 min of extraction time without agitation. The features of the method were established for the studied compounds in terms of linear range, slope and intercept of the calibration graphs, detection and quantification limits and repeatability. For all compounds detection limits were below their threshold levels and repeatability, in terms of relative standard deviation, was good, with values between 3 and 11%. Finally, the method was applied to the analysis of six aged red wines by both internal standard and standard addition calibration methods. The concentrations obtained with both methods were statistically compared.  相似文献   

8.
Five algorithms proposed in the literature for library search identification of unknown compounds from their low resolution mass spectra were optimized and tested by matching test spectra against reference spectra in the NIST-EPA-NIH Mass Spectral Database. The algorithms were probability-based matching (PBM), dot-product, Hertz et al. similarity index, Euclidean distance, and absolute value distance. The test set consisted of 12,592 alternate spectra of about 8000 compounds represented in the database. Most algorithms were optimized by varying their mass weighting and intensity scaling factors. Rank in the list of candidatc compounds was used as the criterion for accuracy. The best performing algorithm (75% accuracy for rank 1) was the dot-product function that measures the cosine of the angle between spectra represented as vectors. Other methods in order of performance were the Euclidean distance (72%), absolute value distance (68%) PBM (65%), and Hertz et al. (64%). Intensity scaling and mass weighting were important in the optimized algorithms with the square root of the intensity scale nearly optimal and the square or cube the best mass weighting power. Several more complex schemes also were tested, but had little effect on the results. A modest improvement in the performance of the dot-product algorithm was made by adding a term that gave additional weight to relative peak intensities for spectra with many peaks in common.  相似文献   

9.
An accurate thermochemical database for 28 halides of carbon, silicon, nitrogen, and phosphorus is presented. The database provides improved standard enthalpies of formation for several compounds of ecological importance (CH3F, CF2Cl2, CFCl3) together with enthalpies of other compounds which are not known due to experimental difficulties in measuring their enthalpies. We also present a comparison of the latest ab initio methods (CBS-QB3 and G3) which are used for thermochemical predictions. The comparison shows that the G3 method consistently underestimates delta H degree f by 1-2 kJ/mol (relative to CBS-QB3).  相似文献   

10.
环境污染事故中挥发性有机物快速定量方法   总被引:3,自引:0,他引:3  
在相同的色谱条件下,分别以内标法和外标法对Restek Volatiles和J&W DB-624毛细管色谱柱建立了以苯、甲苯和乙苯为标准物质的相对响应因子(RRF)快速定量数据库。其它挥发性有机物可采用RRF平均值进行估算,相对误差在-85.9%~52.3%之间。运用建立的数据库,对实际大气样品进行测定,证明方法可行。  相似文献   

11.
A method described by European Union Regulation (EEC) No. 2000R2870 was validated and supported by GC/MS analysis for the determination of volatile congeners and methanol in Turkish raki. The method was validated in terms of specificity, accuracy, precision, LOD, LOQ, linearity, and robustness. The specificity of the method was demonstrated, and the method showed excellent accuracy (97.5-100.1%). Linearity was checked in the ranges of 0.200-26.390 mg/100 mL for more volatile compounds and 1.155-48.00 mg/100 mL for less volatile compounds, after concentrations found in Turkish raki were taken into account. The calibration curves of all analytes showed good linearity (R2 > 0.998). The within- and between-day precision (RSD) values of 11 analytes were in the range of 0.18-4.50%. The LOD and LOQ values were in the range of 0.014-0.362 and 0.045-1.085 mg/100 mL, respectively. The method can be used as an absolute quantification method for the determination of volatile congeners and methanol in Turkish raki and for QC.  相似文献   

12.
A static-bomb combustion calorimeter and a rotating-bomb combustion calorimeter were used to determine the energies of combustion of 2-methylbenzothiazole, 2-methylbenzoxazole, and 2-methyl-2-thiazoline. The static- and rotating-bomb calorimeters were recently calibrated by the standard benzoic acid combustion runs and they were tested with adequate secondary combustion standards. The rotating-bomb calorimeter was tested using thianthrene and, in the present work, 1,2,4-triazole was used to test the static-bomb calorimeter. From the energies of combustion of the compounds under study, the liquid-phase standard molar enthalpies of formation were derived, at T = 298.15 K, as: (72.5 ± 1.5), (?50.7 ± 2.1), and (?88.5 ± 2.8) kJ mol?1, respectively.  相似文献   

13.
This paper presents a detailed study on the calibration of a thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS)-based methodology for quantification of volatile organic compounds (VOCs) in gaseous and liquid samples. For the first time, it is documented to what extent three widely encountered problems affect precise and accurate quantification, and solutions to improve calibration are proposed. The first issue deals with the limited precision in MS quantification, as exemplified by high relative standard deviations (up to 40%, n=5) on response factors of a set of 69 selected VOCs in a volatility range from 16 Pa to 85 kPa at 298 K. The addition of [(2)H(8)]toluene as an internal standard, in gaseous or liquid phase, improves this imprecision by a factor of 5. Second, the matrix in which the standard is dissolved is shown to be highly important towards calibration. Quantification of gaseous VOCs loaded on a sorbent tube using response factors obtained with liquid standards results in systematic deviations of 40-80%. Relative response factors determined by the analysis of sorbent tubes loaded with both analytes and [(2)H(8)]toluene from liquid phase are shown to offer a reliable alternative for quantification of airborne VOCs, without need for expensive and often hardly available gaseous standards. Third, a strategy is proposed involving the determination of a relative response factor being representative for a group of analytes with similar functionalities and electron impact fragmentation patterns. This group method approach indicates to be useful (RSD approximately 10%) for quantifying analytes belonging to that class but having no standards available.  相似文献   

14.
The enthalpies of formation of chlorinated methanes, ethanes, ethylenes, phenols, and benzenes have been calculated at the G3X level of theory using the atomization energy procedure and the method of isodesmic reactions. By comparing the most reliable experimental data on chlorinated hydrocarbons recommended by Manion [Manion JA (2002) J Phys Chem Ref Data 31:123] with the G3X results, the accuracy of theoretical enthalpies of formation is estimated as ranging from ±4 to ±10 kJ/mol. Only for hexachloroethane, the difference between the experimental value and G3X result was outside this range and the experimental enthalpy of formation of hexachloroethane was called into question by theory. The G3X enthalpies of formation of all chlorobenzenes agree well with experimental data which were partly reanalyzed using recent experimental data on enthalpies of sublimation. Based on the G3X results, a set of self-consistent experimental data for chlorobenzenes is recommended. The enthalpies of formation of some polychlorinated dibenzo-p-dioxins were estimated using improved enthalpies of formation for chlorobenzenes. The possible inaccuracy of previously estimated values for polychlorinated aromatic compounds is discussed.  相似文献   

15.
Heat of formation data available for silanes and alkylsilanes have been evaluated using the Benson-Luria electrostatic energy corrected bond additivity method for a priori calculations of heats of formation of hydrocarbons. It is concluded that the calculational method is applicable to silanes and alkylsilanes, and that the recent combustion measurements employing HF and O2 are reliable. Group additivity enthalpies based on these data are presented. Results of a large number of statistical thermodynamic calculations of entropies and heat capacities are also given, and values of the group additivities derivable from these results are presented. Internal consistencies of estimated thermodynamic properties (i.e., estimated reaction enthalpy, entropy, and heat capacity changes) are thought to be reliable to within ±1.5 kcal and ±1.0 e.u., respectively. Group additivity estimates for individual compounds could be significantly less accurate due to the limited accuracy and extent of the ΔH0f data base, and to the uncertainties in assigned frequencies and internal rotational barriers employed in calculating entropies and heat capacities.  相似文献   

16.
The prediction of thermochemical properties such as enthalpies of formation is of crucial importance, both in research and industrial applications, especially for systems involving not well-characterized molecules, such as biomass systems (bio-oils), or systems involving new compounds (new-generation refrigerants). It is highly desirable to obtain an efficient method by which these values can be predicted. Ab initio-based calculations can be very accurate for predicting gas phase thermochemical properties and are usually more versatile than group contribution methods. In this work, we propose a general extension of the work of Paulechka and Kazakov, using very accurate and efficient domain-based local pair natural orbital-coupled cluster theory ab initio calculations, to determine the enthalpies of formation of a broad variety of molecules. New sets of regressed atomic contributions are proposed for a larger group of elements: H, C, N, O, F, S, Cl, and Br. Excellent predictions are obtained for the most studied compounds (bio-oil compounds and refrigerants). © 2019 Wiley Periodicals, Inc.  相似文献   

17.
The standard (p(o) = 0.1 MPa) molar energies of combustion in oxygen, at T = 298.15 K, of solid 3,3-tetramethyleneglutaric acid and the related 3,3-tetramethyleneglutaric anhydride and 3,3-tetramethyleneglutarimide were measured by static bomb combustion calorimetry. The values of the standard molar enthalpies of sublimation, at T = 298.15 K, were obtained by Calvet microcalorimetry, allowing the calculation of the standard molar enthalpies of formation of the compounds, in the gaseous state, at T = 298.15 K. The geometries of the experimentally studied compounds were fully optimized using density functional theory with the B3LYP functional and extended basis sets. More accurate energies were also obtained from single-point calculations at the most stable B3LYP/6-311G** geometries, using the cc-pVTZ basis set. From these calculations the standard molar enthalpies of formation of 3,3-tetramethyleneglutaric acid, 3,3-tetramethyleneglutaric anhydride, and 3,3-tetramethyleneglutarimide were estimated using isodesmic reactions involving glutaric acid, glutaric anhydride, and glutarimide, respectively. Experimental and computational results were used in the discussion of the interrelation of energetics and structure in these compounds and compared with other structurally related compounds.  相似文献   

18.
A simple algorithm is proposed for prediction of linear retention indices, RI, of organic compounds with different structures. The algorithm is based on the hypothesis that any structural moiety of a molecule contributes to gas chromatographic retention to a different extent, depending on its molecular environment. For a given moiety the mean structural increment (MSI) is calculated from the difference between the retention indices of two molecules, one containing it and one not, in different compound families. The mean of these values is the MSI for the corresponding moiety. The correlation between predicted and experimental values affords r 2 = 0.992 and the mean relative error is 1.65% for n = 92 compounds.  相似文献   

19.
Volatile organic compounds (VOCs) play an important role in the chemistry of the atmosphere and in biogeochemistry. They contribute to the oxidative capacity of the atmosphere, particle and air pollutants, as well as to the production of greenhouse gases (for instance ozone). Among analytical techniques for their determination in the atmosphere gas chromatography coupled with mass spectrometry (GC-MS) offers several advantages. However, for an accurate quantification calibration with standard substances is necessary. A quantitative structure-property relationship (QSPR) model for the prediction of MS response factors was developed on basis of our experimental measurements for the quantification of ozone precursors present in the atmosphere. A linear correlation between chemical structures and response factors was established by using a 7-parameter MLR model. The average error in the prediction of response factors was calculated by cross-validation procedure and was below 20%, which is sufficient for the determination of VOCs in the air. The proposed procedure is time consuming so it is more suited for the quantification of tentatively identified organic compounds during the reprocessing of MS chromatograms in cases when the original sample is no longer available.  相似文献   

20.
A series of triethylammonium halides (Et3NHCl, Et3NHBr, and Et3NHI) was synthesized. The crystal structures of the three compounds were characterized by X-ray crystallography. The lattice potential energies and ionic radius of the common cation of the three compounds were obtained from crystallographic data. Molar enthalpies of dissolution of the compounds at various values of molality were measured in the double-distilled water at T = 298.150 K by means of an isoperibol solution-reaction calorimeter. According to Pitzer’s theory, the values of molar enthalpies of dissolution at infinite dilution and Pitzer’s parameters of the compounds were obtained. The values of apparent relative molar enthalpies, relative partial molar enthalpies of the solvent and the compounds at different molalities were derived from the experimental values of molar enthalpies of dissolution of the compounds. Finally, hydration enthalpy of the common cation Et3NH+ was calculated to be ΔH+ = ?(150.386 ± 4.071) kJ · mol?1 by designing a thermochemical cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号