共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics of the C2H5 + Cl2, n‐C3H7 + Cl2, and n‐C4H9 + Cl2 reactions has been studied at temperatures between 190 and 360 K using laser photolysis/photoionization mass spectrometry. Decays of radical concentrations have been monitored in time‐resolved measurements to obtain reaction rate coefficients under pseudo‐first‐order conditions. The bimolecular rate coefficients of all three reactions are independent of the helium bath gas pressure within the experimental range (0.5–5 Torr) and are found to depend on the temperature as follows (ranges are given in parenthesis): k(C2H5 + Cl2) = (1.45 ± 0.04) × 10?11 (T/300 K)?1.73 ± 0.09 cm3 molecule?1 s?1 (190–359 K), k(n‐C3H7 + Cl2) = (1.88 ± 0.06) × 10?11 (T/300 K)?1.57 ± 0.14 cm3 molecule?1 s?1 (204–363 K), and k(n‐C4H9 + Cl2) = (2.21 ± 0.07) × 10?11 (T/300 K)?2.38 ± 0.14 cm3 molecule?1 s?1 (202–359 K), with the uncertainties given as one‐standard deviations. Estimated overall uncertainties in the measured bimolecular reaction rate coefficients are ±20%. Current results are generally in good agreement with previous experiments. However, one former measurement for the bimolecular rate coefficient of C2H5 + Cl2 reaction, derived at 298 K using the very low pressure reactor method, is significantly lower than obtained in this work and in previous determinations. © 2007 Wiley Periodicals, Inc. Int J Chem Kinet 39: 614–619, 2007 相似文献
2.
5‐Hydroxymethylfurfural (5‐HMF) is a cellulosic product of the hydrolysis of biomass, and it is widely considered for the production of several interesting chemicals and derivatives. In the present work, catalytic hydrogenation of 5‐hydroxymethylfurfural to 2,5‐bis‐hydroxymethylfuran was investigated using 5% Ru/C in the aqueous phase. Kinetic data were experimentally obtained over a wide range of temperatures (313–343 K), H2 partial pressure (0.69–2.07 MPa), initial HMF concentration (19.8–59.5 mM), and catalyst loading (0.3–0.7 kg/m3) in a three‐phase slurry reactor. Disappearance of initial 5‐HMF concentrations was modeled using the power law and Langmuir–Hinshelwood–Hougen–Watson models. A model based on the competitive adsorption of molecular H2 and HMF was proposed. It is presumed that surface reaction between nondissociatively chemisorbed H2 and 5‐HMF was rate determining. This model provided the best fit for the kinetic data. From the Arrhenius equation, the activation energy for the surface reaction was found to be 104.9 kJ/mol. 相似文献
3.
Reactions of di‐n‐butyltin(IV) oxide with 4′/2′‐nitrobiphenyl‐2‐carboxylic acids in 1 : 1 and 1 : 2 stoichiometry yield complexes [{(n‐C4H9)2Sn(OCOC12H8NO2?4′/2′)}2O]2 ( 1 and 2 ) and (n‐C4H9)2Sn(OCOC12H8NO2?4′/2′)2 ( 3 and 4 ) respectively. These compounds were characterized by elemental analysis, IR and NMR (1H, 13C and 119Sn) spectroscopy. The IR spectra of these compounds indicate the presence of anisobidentate carboxylate groups and non‐linear C? Sn? C bonds. From the chemical shifts δ (119Sn) and the coupling constants 1J(13C, 119Sn), the coordination number of the tin atom and the geometry of its coordination sphere have been suggested. [{(n‐C4H9)2Sn(OCOC12H8NO2?4′)}2O]2 ( 1 ) exhibits a dimeric structure containing distannoxane units with two types of tin atom with essentially identical geometry. To a first approximation, the tin atoms appear to be pentacoordinated with distorted trigonal bipyramidal geometry. However, each type of tin atom is further subjected to a sixth weaker interaction and may be described as having a capped trigonal bipyramidal structure. The diffraction study of the complex (n‐C4H9)2Sn(OCOC12H8NO2?4′)2 ( 3 ) shows a six–coordinate tin in a distorted octahedral frame containing bidentate asymmetric chelating carboxylate groups, with the n‐Bu groups trans to each other. The n‐Bu? Sn? n‐Bu angle is 152.8° and the Sn? O distances are 2.108(4) and 2.493(5) Å. The oxygen atom of the nitro group of the ligand does not participate in bonding to the tin atom in 1 and 3 . Crystals of 1 are triclinic with space group P1 and of that of 3 have orthorhombic space group Pnna. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
4.
Rate coefficients for gas‐phase reaction between nitrate radicals and the n‐C6–C10 aldehydes have been determined by a relative rate technique. All experiments were carried out at 297 ± 2 K, 1020 ± 10 mbar and using synthetic air or nitrogen as the bath gas. The experiments were made with a collapsible sampling bag as reaction chamber, employing solid‐phase micro extraction for sampling and gas chromatography/flame ionization detection for analysis of the reaction mixtures. One limited set of experiments was carried out using a glass reactor and long‐path FTIR spectroscopy. The results show good agreement between the different techniques and conditions employed as well as with previous studies (where available). With butanal as reference compound, the determined values (in units of 10?14 cm3 molecule?1 s?1) for each of the aldehydes were as follows: hexanal, 1.7 ± 0.1; heptanal, 2.1 ± 0.3; octanal, 1.5 ± 0.2; nonanal, 1.8 ± 0.2; and decanal, 2.2 ± 0.4. With propene as reference compound, the determined rate coefficients were as follows: heptanal, 1.9 ± 0.2; octanal, 2.0 ± 0.3; and nonanal, 2.2 ± 0.3. With 1‐butene as reference compound, the rate coefficients for hexanal and heptanal were 1.6 ± 0.2 and 1.8 ± 0.1, respectively. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 35: 120–129, 2003 相似文献
5.
6.
Long‐Cheng Gao Qi‐Wei Pan Yi Yi Xing‐He Fan Xiao‐Fang Chen Qi‐Feng Zhou 《Journal of polymer science. Part A, Polymer chemistry》2005,43(23):5935-5943
A series of rod–coil diblock copolymers, consisting of poly{2,5‐bis[(4‐methoxyphenyl)oxycarbonyl]styrene} as a rigid segment and poly(n‐butyl acrylate) as a flexible part, were successfully prepared through two inverse procedures by atom transfer radical polymerization. The copolymers were characterized by 1H NMR and gel permeation chromatography and had high molecular weights and relatively narrow polydispersities (polydispersity index < 1.20). All the block copolymers synthesized had two distinct glass‐transition temperatures according to differential scanning calorimetry. A polarizing optical microscopy investigation demonstrated the liquid crystallinity of the diblock copolymers. The self‐assembly behaviors in dilute solutions was studied by transmission electron microscopy. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5935–5943, 2005 相似文献
7.
Stereoselective Substrate‐Controlled Asymmetric Syntheses of both 2,5‐cis‐ and 2,5‐trans‐Tetrahydrofuranoid Oxylipids: Stereodivergent Intramolecular Amide Enolate Alkylation 下载免费PDF全文
Hongjun Jang Iljin Shin Prof. Dr. Dongjoo Lee Prof. Dr. Hyoungsu Kim Prof. Dr. Deukjoon Kim 《Angewandte Chemie (International ed. in English)》2016,55(22):6497-6501
The concise, highly stereoselective, substrate‐controlled asymmetric total syntheses of both 2,5‐cis‐ and 2,5‐trans‐tetrahydrofuranoid nematocidal oxylipids from the Australian brown algae Notheia anomala have been accomplished in a stereodivergent fashion. The highly stereoselective intramolecular amide enolate alkylation strategy provides access to both stereoisomers of the 3‐hydroxy‐2,5‐disubstituted tetrahydrofuran core of these marine natural products through chelate and nonchelate control, which is driven by the C3‐hydroxy protecting group. This approach offers an optional and highly stereoelective access to any of the eight possible stereoisomers of the 2,5‐disubstituted‐3‐oxygenated tetrahydrofuran skeleton, an important structural feature which is present in many biologically active natural products. 相似文献
8.
Artur Sikorski Karol Krzymiski Antoni Konitz Jerzy Baejowski 《Acta Crystallographica. Section C, Structural Chemistry》2005,61(1):o50-o52
The title compounds, 2‐ethylphenyl acridine‐9‐carboxylate, C22H17NO2, (I), and 2,5‐dimethylphenyl acridine‐9‐carboxylate, C22H17NO2, (II), form triclinic and monoclinic crystals, respectively. Related by a centre of symmetry, adjacent molecules of (I) are linked in the lattice via a network of C—H·π and non‐specific dispersive interactions. As a result, acridine moieties and independent phenyl moieties of (I) are parallel in the lattice. The molecules of (II), arranged in a `head‐to‐tail' manner and related by a centre of symmetry, form pairs stabilized via C—H·π interactions. These are linked in the crystal via dispersive interactions. Acridine and independent phenyl moieties lie parallel within the pairs, while adjacent pairs are perpendicular, forming a herring‐bone pattern. 相似文献
9.
Thomas D. McGrath Mark A. Fox Alan J. Welch 《Acta Crystallographica. Section C, Structural Chemistry》2000,56(4):487-488
The title compound, 9‐iodo‐1,2‐diphenyl‐1,2‐dicarba‐closo‐dodecaborane(9), C14H19B10I, has the expected pseudo‐icosahedral cluster geometry, with a cage C—C distance of 1.724 (4) Å, comparable to that in the non‐iodinated parent. However, the twist angles, θ, of the phenyl rings are 2.1 (6) and 27.6 (5)°, the latter being unusually large. 相似文献
10.
We prepared the benzoxazole derivatives bearing the (thio) phosphoryl moiety by addition reactions of 2‐hydrazionbenzoxazole with isothiocyanato (thio) phosphates and characterized their structures by elementary analysis and 1H NMR and IR spectral data. From the results of biological activity screening, we found that these compounds possess some herbicidal, and plant growth regulator activities, and especially good fungicidal activity against Puccinia recondita. © 2001 John Wiley & Sons, Inc. Heteroatom Chem 12:151–155, 2001 相似文献
11.
The absolute bimolecular rate constants for the reactions of C6H5 with 2‐methylpropane, 2,3‐dimethylbutane and 2,3,4‐trimethylpentane have been measured by cavity ringdown spectrometry at temperatures between 290 and 500 K. For 2‐methylpropane, additional measurements were performed with the pulsed laser photolysis/mass spectrometry, extending the temperature range to 972 K. The reactions were found to be dominated by the abstraction of a tertiary C H bond from the molecular reactant, resulting in the production of a tertiary alkyl radical: C6H5 + CH(CH3)3 → C6H6 + t‐C4H9 (1) (1) C6H5 + (CH3)2CHCH(CH3)2 → C6H6 + t‐C6H13 (2) (2) C6H5 + (CH3)2CHCH(CH3)CH(CH3)2 → C6H6 + t‐C8H17 (3) (3) with the following rate constants given in units of cm3 mol−1 s−1: k1 = 10(11.45 ± 0.18) e−(1512 ± 44)/T k2 = 10(11.72 ± 0.15) e−(1007 ± 124)/T k3 = 10(11.83 ± 0.13) e−(428 ± 108)/T © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 645–653, 1999 相似文献
12.
The levulinic acid was esterified with alcohol at an alcohol to acid molar ratio of 3:1, 5:1, and 10:1 in the presence of a 0.1 wt% methanesulfonic acid catalyst. During esterification, the temperature was changed linearly from 373 to 428 K and its average change was 4.5 K/min. The authors stated that reactions were of second order and that the activation energy (E) decreased from 61 to 46 kJ/mol in the following alcohol sequence: n‐hexanol > n‐octanol > 2‐ethylhexanol. The fitting errors varied between 3.8% and 6.4%. The time of experiment carried out under nonisothermal condition is five to 15 times shorter than that conducted under isothermal conditions. A smaller number of experimental series also determines a significantly lower cost of such research. The results of such study are the precise form of the kinetic equation, which is indispensable in design and optimization of industrial‐scale chemical reactors. 相似文献
13.
Vapor‐phase aldol condensation of n‐butyraldehyde to 2‐ethyl‐2‐hexenal was studied at 1 atm and 150~ 300°C in a fixed‐bed, integral‐flow reactor by using NaX, KX, γ‐Al2O3 and Na/NaOH/γ‐Al2CO3 catalysts. Ion exchange of NaX zeolite with potassium acetate solution results in a decrease of crystallinity and apparent lowering of surface area, whereas the basic strength is enhanced. Treatment of γ‐Al2O3 with NaOH and Na causes a large decrease of the surface area but strong enhancement of the catalyst basicity. The catalytic activity on the basis of unit surface area is in the order Na/NaOH/γ‐Al2O3 < KXU < KXW < NaX >γ‐Al2O3, in accordance with the relative catalyst basic strength. The molar ratio of trimeric to dimeric products increases with increasing the reaction temperature and the catalyst basic strength except for Na/NaOH/γ‐Al2O3. Very high selectivity of 2‐ethyl‐2‐hexenal (>98.5%) was observed for reactions over NaX zeolite at 150°C. Based on the FT‐IR and the catalytic results, the reaction paths are proposed as follows: self‐aldol condensation of n‐butyraldehyde, followed by dehydration produces 2‐ethyl‐2‐hexenal, which then reacts with n‐butyraldehyde and successively dehydrates to 2,4‐diethyl‐2,4‐octadienal and 1,3,5‐triethylbenzene. For the reaction over NaX, the calculated Arrhenius frequency factor and activation energy are 314 mol/g·h and 32.6 kJ/mol, respectively. 相似文献
14.
The kinetics and mechanism of the reaction of chlorine atoms with n‐butanal and n‐pentanal have been investigated in a 142‐L reaction cell coupled to a Fourier transform infrared (FTIR) spectrometer at 298 ± 2 K and at 800 ± 3 Torr. The rate coefficients for Cl + n‐butanal and Cl + n‐pentanal were measured using the relative rate technique with isopropanol and ethene as the reference compounds. The yield of acyl radicals was determined by measuring yields of acid chloride and carbon monoxide products from the reaction of Cl + aldehyde in the absence of oxygen. The rate coefficients for Cl + n‐butanal and Cl + n‐pentanal are (1.63 ± 0.59) × 10?10 cm3 molecule?1 s? 1 and (2.37 ± 0.82) × 10?10 cm3 molecule?1 s?1, respectively. The yields of acyl radicals from the reactions are 0.66 ± 0.04 for n‐butanal and 0.45 ± 0.04 for n‐pentanal. Under ambient conditions, the acyl radicals generated will react almost exclusively with oxygen. Mechanistic implications of these measurements are discussed. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 41: 133–141, 2009 相似文献
15.
Jing Gao Yingwu Luo Rui Wang Bogeng Li Shiping Zhu 《Journal of polymer science. Part A, Polymer chemistry》2007,45(14):3098-3111
The RAFT (co)polymerization kinetics of methyl methacrylate (MMA) and n‐butyl acrylate (BA) mediated by 2‐cyanoprop‐2‐yl dithiobenzoate was studied with various RAFT concentrations and monomer compositions. The homopolymerization of MMA gave the highest rate. Increasing the BA fraction fBA dramatically decreased the copolymerization rate. The rate reached the lowest point at fMMA ~ 0.2. This observation is in sharp contrast to the conventional RAFT‐free copolymerization, where BA homopolymerization gave the highest rate and the copolymerization rate decreased monotonously with increasing fMMA. This peculiar phenomenon can be explained by the RAFT retardation effect. The RAFT copolymerization rate can be described by 〈Rp〉/〈Rp〉0 = (1 + 2(〈kc〉/〈kt〉)〈K〉)[RAFT]0)?0.5, where 〈Rp〉0 is the RAFT‐free copolymerization rate and 〈K〉 is the apparent addition–fragmentation equilibrium coefficient. A theoretical expression of 〈K〉 based on a terminal model of addition and fragmentation reactions was derived and successfully applied to predict the RAFT copolymerization kinetics with the rate parameters obtained from the homopolymerization systems. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3098–3111, 2007 相似文献
16.
In this article, we present our results concerning new C2‐symmetric bisphosphinites with a (1R,2R)‐1,2‐bis([1,1′: 3′,1″‐terphenyl]‐5′‐yl)ethane backbone. For the given chirality of the backbone, derivatives with aromatic and aliphatic substituents at the donor P‐atoms were synthesized with moderate yields in a straightforward manner. These compounds were evaluated in the Pd0‐catalyzed enantioselective allylic alkylations (up to 67% ee). 相似文献
17.
Dr. Jihye Park Hyunjung Oh Saegun Kim Kyuneun Kim Dr. Ashok Kumar Pandey Sang Hoon Han Dr. Soo Bong Han Prof. Dr. In Su Kim 《Angewandte Chemie (International ed. in English)》2018,57(39):12737-12740
The ability to alkylate pyridines and quinolines is important for their further development as pharmaceuticals and agrochemicals, and for other purposes. Herein we describe the unprecedented reductive alkylation of pyridine and quinoline N‐oxides using Wittig reagents. A wide range of pyridine and quinoline N‐oxides were converted into C2‐alkylated pyridines and quinolines with excellent site selectivity and functional‐group compatibility. Sequential C?H functionalization reactions of pyridine and quinoline N‐oxides highlight the utility of the developed method. Detailed labeling experiments were performed to elucidate the mechanism of this process. 相似文献
18.
The kinetics of C6H5 reactions with n‐CnH2n+2 (n = 3, 4, 6, 8) have been studied by the pulsed laser photolysis/mass spectrometric method using C6H5COCH3 as the phenyl precursor at temperatures between 494 and 1051 K. The rate constants were determined by kinetic modeling of the absolute yields of C6H6 at each temperature. Another major product C6H5CH3 formed by the recombination of C6H5 and CH3 could also be quantitatively modeled using the known rate constant for the reaction. A weighted least‐squares analysis of the four sets of data gave k (C3H8) = (1.96 ± 0.15) × 1011 exp[?(1938 ± 56)/T], and k (n‐C4H10) = (2.65 ± 0.23) × 1011 exp[?(1950 ± 55)/T] k (n‐C6H14) = (4.56 ± 0.21) × 1011 exp[?(1735 ± 55)/T], and k (n?C8H18) = (4.31 ± 0.39) × 1011 exp[?(1415 ± 65)T] cm3 mol?1 s?1 for the temperature range studied. For the butane and hexane reactions, we have also applied the CRDS technique to extend our temperature range down to 297 K; the results obtained by the decay of C6H5 with CRDS agree fully with those determined by absolute product yield measurements with PLP/MS. Weighted least‐squares analyses of these two sets of data gave rise to k (n?C4H10) = (2.70 ± 0.15) × 1011 exp[?(1880 ± 127)/T] and k (n?C6H14) = (4.81 ± 0.30) × 1011 exp[?(1780 ± 133)/T] cm3 mol?1 s?1 for the temperature range 297‐‐1046 K. From the absolute rate constants for the two larger molecular reactions (C6H5 + n‐C6H14 and n‐C8H18), we derived the rate constant for H‐abstraction from a secondary C? H bond, ks?CH = (4.19 ± 0.24) × 1010 exp[?(1770 ± 48)/T] cm3 mol?1 s?1. © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 36: 49–56, 2004 相似文献
19.
20.
Alkene Isomerization–Hydroarylation Tandem Catalysis: Indole C2‐Alkylation with Aryl‐Substituted Alkenes Leading to 1,1‐Diarylalkanes 下载免费PDF全文
A cobalt‐N‐heterocyclic carbene catalyst generated from CoBr2, imidazolium salt, and cyclohexylmagnesium bromide was found to promote the imine‐directed C2‐alkylation of indoles with nonconjugated arylalkenes through a tandem alkene isomerization–hydroarylation process, affording 1,1‐diarylalkanes with exclusive regioselectivity. The feasibility of the tandem catalysis was demonstrated for allyl‐, homoallyl‐, and bishomoallylbenzene derivatives. The catalytic system is also applicable to a variety of β‐substituted styrene derivatives. Mechanistic experiments using deuterium‐labeled indole substrate and Grignard reagent provided insight into the cobalt‐mediated C? H activation step, which likely involves exchange of the C2‐hydrogen atom of the former and the β‐hydrogen atoms of the latter. 相似文献