首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Solid‐phase extraction coupled with dispersive liquid–liquid microextraction was developed as an ultra‐preconcentration method for the determination of four organophosphorus pesticides (isocarbophos, parathion‐methyl, triazophos and fenitrothion) in water samples. The analytes considered in this study were rapidly extracted and concentrated from large volumes of aqueous solutions (100 mL) by solid‐phase extraction coupled with dispersive liquid–liquid microextraction and then analyzed using high performance liquid chromatography. Experimental variables including type and volume of elution solvent, volume and flow rate of sample solution, salt concentration, type and volume of extraction solvent and sample solution pH were investigated for the solid‐phase extraction coupled with dispersive liquid–liquid microextraction with these analytes, and the best results were obtained using methanol as eluent and ethylene chloride as extraction solvent. Under the optimal conditions, an exhaustive extraction for four analytes (recoveries >86.9%) and high enrichment factors were attained. The limits of detection were between 0.021 and 0.15 μg/L. The relative standard deviations for 0.5 μg/L of the pesticides in water were in the range of 1.9–6.8% (n = 5). The proposed strategy offered the advantages of simple operation, high enrichment factor and sensitivity and was successfully applied to the determination of four organophosphorus pesticides in water samples.  相似文献   

2.
An analytical method is presented for the determination of paraben preservatives in semisolid cream samples by matrix solid‐phase dispersion combined with supramolecular solvent‐based microextraction. Due to the oily and sticky nature of the sample matrix, parabens were first extracted from the samples by matrix solid‐phase dispersion using silica as sorbent material with a clean‐up performed with tetrahydrofuran in the elution step. The eluate (500 μL), 1‐decanol (120 μL), and water (4.4 mL) were then mixed in a polyethylene pipette to form supramolecular solvent. Finally, the analytes in the supramolecular solvent were separated and determined by liquid chromatography with ultraviolet detection. Under optimal extraction conditions, the extraction recoveries of the studied compounds were obtained in the range of 63–83%. The limits of detection for the analytes were between 0.03 and 0.04 μg/g. The precision of the method varied between 4.0–6.7 (intraday) and 6.2–7.9% (interday). Finally, the optimized procedure was applied to the determination of the target preservatives in a variety of cream samples (diaper rash, skin allergy, face and hand moisturizing) with satisfactory recoveries (86–102%).  相似文献   

3.
An ionic liquid foam floatation coupled with ionic liquid dispersive liquid–liquid microextraction method was proposed for the extraction and concentration of 17‐α‐estradiol, 17‐β‐estradiol‐benzoate, and quinestrol in environmental water samples by high‐performance liquid chromatography with fluorescence detection. 1‐Hexyl‐3‐methylimidazolium tetrafluoroborate was applied as foaming agent in the foam flotation process and dispersive solvent in microextraction. The introduction of the ion‐pairing and salting‐out agent NH4PF6 was beneficial to the improvement of recoveries for the hydrophobic ionic liquid phase and analytes. Parameters of the proposed method including concentration of 1‐hexyl‐3‐methylimidazolium tetrafluoroborate, flow rate of carrier gas, floatation time, types and concentration of ionic liquids, salt concentration in samples, extraction time, and centrifugation time were evaluated. The recoveries were between 98 and 105% with relative standard deviations lower than 7% for lake water and well water samples. The isolation of the target compounds from the water was found to be efficient, and the enrichment factors ranged from 4445 to 4632. This developing method is free of volatile organic solvents compared with regular extraction. Based on the unique properties of ionic liquids, the application of foam floatation, and dispersive liquid–liquid microextraction was widened.  相似文献   

4.
A simple and sensitive method for determination of three aconitum alkaloids and their metabolites in human plasma was developed using matrix solid‐phase dispersion combined with vortex‐assisted dispersive liquid–liquid microextraction and high‐performance liquid chromatography with diode array detection. The plasma sample was directly purified by matrix solid‐phase dispersion and the eluate obtained was concentrated and further clarified by vortex‐assisted dispersive liquid–liquid microextraction. Some important parameters affecting the extraction efficiency, such as type and amount of dispersing sorbent, type and volume of elution solvent, type and volume of extraction solvent, salt concentration as well as sample solution pH, were investigated in detail. Under optimal conditions, the proposed method has good repeatability and reproducibility with intraday and interday relative standard deviations lower than 5.44 and 5.75%, respectively. The recoveries of the aconitum alkaloids ranged from 73.81 to 101.82%, and the detection limits were achieved within the range of 1.6–2.1 ng/mL. The proposed method offered the advantages of good applicability, sensitivity, simplicity, and feasibility, which makes it suitable for the determination of trace amounts of aconitum alkaloids in human plasma samples.  相似文献   

5.
A novel two‐step extraction technique combining ionic‐liquid‐based dispersive liquid–liquid microextraction with magnetic solid‐phase extraction was developed for the preconcentration and separation of aflatoxins in animal feedstuffs before high‐performance liquid chromatography coupled with fluorescence detection. In this work, ionic liquid 1‐octyl‐3‐methylimidazolium hexafluorophosphate was used as the extractant in dispersive liquid–liquid microextraction, and hydrophobic pelargonic acid modified Fe3O4 magnetic nanoparticles as an efficient adsorbent were applied to retrieve the aflatoxins‐containing ionic liquid. Notably, the target of magnetic nanoparticles was the ionic liquid rather than the aflatoxins. Because of the rapid mass transfer associated with the dispersive liquid–liquid microextraction and magnetic solid phase steps, fast extraction could be achieved. The main parameters affecting the extraction recoveries of aflatoxins were investigated and optimized. Under the optimum conditions, vortexing at 2500 rpm for 1 min in the dispersive liquid–liquid microextraction and magnetic solid‐phase extraction and then desorption by sonication for 2 min with acetonitrile as eluent. The recoveries were 90.3–103.7% with relative standard deviations of 3.2–6.4%. Good linearity was observed with correlation coefficients ranged from 0.9986 to 0.9995. The detection limits were 0.632, 0.087, 0.422 and 0.146 ng/mL for aflatoxins B1, B2, G1, and G2, respectively. The results were also compared with the pretreatment method carried out by conventional immunoaffinity columns.  相似文献   

6.
An easy, quick, and green method, microwave‐assisted liquid–liquid microextraction based on solidification of ionic liquid, was first developed and applied to the extraction of sulfonamides in environmental water samples. 1‐Ethy‐3‐methylimidazolium hexafluorophosphate, which is a solid‐state ionic liquid at room temperature, was used as extraction solvent in the present method. After microwave irradiation for 90 s, the solid‐state ionic liquid was melted into liquid phase and used to finish the extraction of the analytes. The ionic liquid and sample matrix can be separated by freezing and centrifuging. Several experimental parameters, including amount of extraction solvent, microwave power and irradiation time, pH of sample solution, and ionic strength, were investigated and optimized. Under the optimum experimental conditions, good linearity was observed in the range of 2.00–400.00 μg/L with the correlation coefficients ranging from 0.9995 to 0.9999. The limits of detection for sulfathiazole, sulfachlorpyridazine, sulfamethoxazole, and sulfaphenazole were 0.39, 0.33, 0.62, and 0.85 μg/L, respectively. When the present method was applied to the analysis of environmental water samples, the recoveries of the analytes ranged from 75.09 to 115.78% and relative standard deviations were lower than 11.89%.  相似文献   

7.
Matrix solid‐phase dispersion combined with dispersive liquid–liquid microextraction has been developed as a new sample pretreatment method for the determination of four sulfonylurea herbicides (chlorsulfuron, bensulfuron‐methyl, chlorimuron‐ethyl, and pyrazosulfuron) in tea by high‐performance liquid chromatography with diode array detection. The extraction and cleanup by matrix solid‐phase dispersion was carried out by using CN‐silica as dispersant and carbon nanotubes as cleanup sorbent eluted with acidified dichloromethane. The eluent of matrix solid‐phase dispersion was evaporated and redissolved in 0.5 mL methanol, and used as the dispersive solvent of the following dispersive liquid–liquid microextraction procedure for further purification and enrichment of the target analytes before high‐performance liquid chromatography analysis. Under the optimum conditions, the method yielded a linear calibration curve in the concentration range from 5.0 to 10 000 ng/g for target analytes with a correlation coefficients (r2) ranging from 0.9959 to 0.9998. The limits of detection for the analytes were in the range of 1.31–2.81 ng/g. Recoveries of the four sulfonylurea herbicides at two fortification levels were between 72.8 and 110.6% with relative standard deviations lower than 6.95%. The method was successfully applied to the analysis of four sulfonylurea herbicides in several tea samples.  相似文献   

8.
A novel microextraction method, termed microwave‐assisted ionic liquid/ionic liquid dispersive liquid–liquid microextraction, has been developed for the rapid enrichment and analysis of triazine herbicides in fruit juice samples by high‐performance liquid chromatography. Instead of using hazardous organic solvents, two kinds of ionic liquids, a hydrophobic ionic liquid (1‐hexyl‐3‐methylimidazolium hexafluorophosphate) and a hydrophilic ionic liquid (1‐butyl‐3‐methylimidazolium tetrafluoroborate), were used as the extraction solvent and dispersion agent, respectively, in this method. The extraction procedure was induced by the formation of cloudy solution, which was composed of fine drops of 1‐hexyl‐3‐methylimidazolium hexafluorophosphate dispersed entirely into sample solution with the help of 1‐butyl‐3‐methylimidazolium tetrafluoroborate. In addition, an ion‐pairing agent (NH4PF6) was introduced to improve recoveries of the ionic liquid phase. Several experimental parameters that might affect the extraction efficiency were investigated. Under the optimum experimental conditions, the linearity for determining the analytes was in the range of 5.00–250.00 μg/L, with the correlation coefficients of 0.9982–0.9997. The practical application of this effective and green method is demonstrated by the successful analysis of triazine herbicides in four juice samples, with satisfactory recoveries (76.7–105.7%) and relative standard deviations (lower than 6.6%). In general, this method is fast, effective, and robust to determine triazine herbicides in juice samples.  相似文献   

9.
In this study, chitosan‐zinc oxide nanoparticles were used as a sorbent of miniaturized matrix solid‐phase dispersion combined with flotation‐assisted dispersive liquid–liquid microextraction for the simultaneous determination of 13 n‐alkanes such as C8H18 and C20H42 in soil samples. The solid samples were directly blended with the chitosan nanoparticles in the solid‐phase dispersion method. The eluent of solid‐phase dispersion was applied as the dispersive solvent for the following flotation‐assisted dispersive liquid–liquid microextraction for further purification and enrichment of the target compounds prior to gas chromatography with flame ionization detection. Under the optimum conditions, good linearity with correlation coefficients in the range 0.9991 < r2 < 0.9995 and low detection limits between 0.08 to 2.5 ng/g were achieved. The presented procedure combined the advantages of chitosan‐zinc oxide nanoparticles, solid‐phase dispersion and flotation‐assisted dispersive liquid–liquid microextraction, and could be applied for the determination of n‐alkanes in complicated soil samples with acceptable recoveries.  相似文献   

10.
A sensitive method based on ionic liquid for single‐drop liquid microextraction coupled with HPLC‐UV was developed for the determination of carbonyl compounds in environmental waters using 1‐octyl‐3‐methylimidazolium hexafluorophosphate [C8min][PF6] as extraction solvent and 2,4‐dinitrophenylhydrazine as derivatizing agent. The extraction parameters affecting the enrichment factors such as solvent volume, pH, extraction time and salt concentration were investigated. A homemade funnel form polytetrafluoroethylene sleeve was fixed at the tip of the syringe needle and this allowed the use of 10 μL drop of ionic liquid for direct immersion extraction. Under the optimal conditions, the remarkable enrichment factors up to 150‐fold were obtained depending on the target analytes. The method has been validated when rectilinear relationship was obtained between the concentrations of analytes and peak area in the range of 5–100 ng/mL, the correlation coefficients were from 0.995 to 0.998, and the limit of detection was in the range of 0.04–2.03 ng/mL. The method was applied to monitor the concentration of carbonyl compounds in environmental waters with spiked recovery in the range of 84.2–106.9%.  相似文献   

11.
A novel microextraction method based on vortex‐ and CO2‐assisted liquid–liquid microextraction with salt addition for the isolation of furanic compounds (5‐hydroxymethyl‐2‐furaldehyde, 5‐methyl‐2‐furaldehyde, 2‐furaldehyde, 3‐furaldehyde, 2‐furoic and 3‐furoic acids) was developed. Purging the sample with CO2 was applied after vortexing to enhance the phase separation and mass transfer of the analytes. The optimum extraction conditions were: extraction solvent (volume), propyl acetate (125 μL); sample pH, 2.4; vortexing time, 45 s; salt concentration, 25% w/v and purging time, 5 min. The analytes were separated using an ODS Hypersil C18 column (250×4.6 mm i.d, 5 μm) under gradient flow. The proposed method showed good linearities (r2 >0.999), low detection limits (0.08–1.9 μg/L) and good recoveries (80.7–122%). The validated method was successfully applied for the determination of the furanic compounds in concentrated juice (mango, date, orange, pomegranate, roselle, mangosteen and soursop) and dried fruit (prune, date and apricot paste) samples.  相似文献   

12.
A polymeric ionic liquid modified stainless steel wire for solid‐phase microextraction was reported. Mercaptopropyl‐functionalized stainless steel wire that was formed by co‐condensation of tetramethoxysilane and 3‐mercaptopropyltrimethoxysilane via a sol‐gel process, which is followed by in situ surface radical chain‐transfer polymerization of 1‐vinyl‐3‐octylimidazolium hexafluorophosphate to result in polymeric ionic liquid modified stainless steel wire. The fiber surface was characterized by field emission scanning electron microscope equipped with energy dispersive X‐ray analysis. Coupled with GC, extraction performance of the fiber was tested with phenols and polycyclic aromatic hydrocarbons as model analytes. Effects of extraction and desorption conditions were investigated systematically in our work. RSDs for single‐fiber repeatability and fiber‐to‐fiber reproducibility were less than 7.34 and 16.82%, respectively. The calibration curves were linear in a wide range for all analytes and the detection limits were in the range of 10–60 ng L?1. Two real water samples from the Yellow River and local waterworks were applied to test the as‐established solid‐phase microextraction–GC method with the recoveries of samples spiked at 10 μg L?1 ranged from 83.35 to 119.24%. The fiber not only exhibited excellent extraction efficiency, but also very good rigidity, stability and durability.  相似文献   

13.
In this study, silica modified with a 30‐membered macrocyclic polyamine was synthesized and first used as an adsorbent material in SPE. The SPE was further combined with ionic liquid (IL) dispersive liquid–liquid microextraction (DLLME). Five polycyclic aromatic hydrocarbons were employed as model analytes to evaluate the extraction procedure and were determined by HPLC combined with UV/Vis detection. Acetone was used as the elution solvent in SPE as well as the dispersive solvent in DLLME. The enrichment of analytes was achieved using the 1,3‐dibutylimidazolium bis[(trifluoromethyl)sulfonyl]imide IL/acetone/water system. Experimental conditions for the overall macrocycle‐SPE–IL‐DLLME method, such as the amount of adsorbent, sample solution volume, sample solution pH, type of elution solvent as well as addition of salt, were studied and optimized. The developed method could be successfully applied to the analysis of four real water samples. The macrocyclic polyamine offered higher extraction efficiency for analytes compared with commercially available C18 cartridge, and the developed method provided higher enrichment factors (2768–5409) for model analytes compared with the single DLLME. Good linearity with the correlation coefficients ranging from 0.9983 to 0.9999 and LODs as low as 0.002 μg/L were obtained in the proposed method.  相似文献   

14.
A simple, efficient, and sensitive strategy by coupling matrix solid‐phase dispersion with ultra high performance liquid chromatography quadrupole time‐of‐flight mass spectrometry was proposed to extract and determine three types of components (including seven analytes) in Chinese patent medicines Chenxiangqu. The highly ordered mesoporous material Fe‐SBA‐15 synthesized under weakly acidic conditions was selected as a dispersant in matrix solid phase dispersion extraction for the first time. Several parameters including the mass ratio of sample to dispersant, the type of dispersant, the grinding time, and the elution condition were investigated in this work. Under the optimized conditions, 20 compounds were identified by quadrupole time‐of‐flight mass spectrometry and seven analytes were quantified. The results demonstrated that the developed method has good linearity (r > 0.9995), and the limits of detection of the analytes were as low as 0.55 ng/mL. The recoveries of all seven analytes ranged from 97.6 to 104.6% (relative standard deviation < 3.4%). Finally, the improved method was successfully applied to determination of five batches of Chenxiangqu samples, which provided a robust method in quality control of Chinese patent medicines Chenxiangqu. The developed strategy also shows its great potential in analysis of complex matrix samples.  相似文献   

15.
A new simple and rapid pretreatment method for simultaneous determination of 19 sulfonamides in pork samples was developed through combining the QuEChERS method with dispersive liquid–liquid microextraction followed by ultra‐high performance liquid chromatography with tandem mass spectrometry. The sample preparation involves extraction/partitioning with QuEChERS method followed by dispersive liquid–liquid microextraction using tetrachloroethane as extractive solvent and the acetonitrile extract as dispersive solvent that obtained by QuEChERS. The enriched tetrachloroethane organic phase by dispersive liquid–liquid microextraction was evaporated, reconstituted with 100 μL acetonitrile/water (1:9 v/v) and injected into an ultra‐high performance liquid chromatography with a mobile phase composed of acetonitrile and 0.1% v/v formic acid under gradient elution and separated using a BHE C18 column. Various parameters affecting the extraction efficiency were investigated. Matrix‐matched calibration curves were established. Good linear relationships were obtained for all analytes in a range of 2.0–100 μg/kg and the limits of detection were 0.04–0.49 μg/kg. Average recoveries at three spiking levels were in the range of 78.3–106.1% with relative standard deviations less than 12.7% (n = 6). The developed method was successfully applied to determine sulfonamide residues in pork samples.  相似文献   

16.
In this work we seek clues to select the appropriate dispersive liquid–liquid microextraction mode for extracting three categories of compounds. For this purpose, three common dispersive liquid–liquid microextraction modes were compared under optimized conditions. Traditional dispersive liquid–liquid microextraction, in situ ionic liquid dispersive liquid–liquid microextraction, and conventional ionic liquid dispersive liquid–liquid microextraction using chloroform, 1‐butyl‐3‐methylimidazolium tetrafluoroborate, and 1‐hexyl‐3‐methylimidazolium hexafluorophosphate as the extraction solvent, respectively, were considered in this work. Phenolic, neutral aromatic, and amino compounds (each category included six members) were studied as analytes. The analytes in the extracts were determined by high‐performance liquid chromatography with UV detection. For the analytes with polar functionalities, the in situ ionic liquid dispersive liquid–liquid microextraction mode mostly led to better results. In contrast, for neutral hydrocarbons without polar functionalities, traditional dispersive liquid–liquid microextraction using chloroform produced better results. In this case, where dispersion forces were the dominant interactions in the extraction, the refractive index of solvent and analyte predicted the extraction performance better than the octanol/water partition coefficient. It was also revealed that none of the methods were successful in extracting hydrophilic analytes (compounds with the log octanol/water partition coefficient <2). The results of this study could be helpful in selecting a dispersive liquid–liquid microextraction mode for the extraction of various groups of compounds.  相似文献   

17.
A green and simple method, ionic liquid‐based microwave‐assisted surfactant‐improved dispersive liquid–liquid microextraction and derivatization was developed for the determination of aminoglycosides in milk samples. Nonionic surfactant Triton X‐100 and ionic liquid 1‐hexyl‐3‐methylimidazolium hexafluorophosphate were used as the disperser and extraction solvent, respectively. Extraction, preconcentration, and derivatization of aminoglycosides were carried out in a single step. Several experimental parameters, including type and volume of extraction solvent, type and concentration of surfactant, microwave power and irradiation time, concentration of derivatization reagent, and pH value and volume of buffer were investigated and optimized. Under the optimum experimental conditions, the linearities for determining the analytes were in the range 0.4–10.0 ng/mL for tobramycin, 1.0–25.0 ng/mL for neomycin, and 2.0–50.0 ng/mL for gentamicin, with the correlation coefficients ranging from 0.9991 to 0.9998. The LODs for the analytes were between 0.11 and 0.50 ng/mL. The present method was applied to the analysis of different milk samples, and the recoveries of aminoglycosides obtained were in the range 96.4–105.4% with the RSDs lower than 5.5%. The results showed that the present method was a rapid, convenient, and environmentally friendly method for the determination of aminoglycosides in milk samples.  相似文献   

18.
A novel method has been developed for the analysis of zearalenone in maize products by vortex‐assisted ionic‐liquid‐based dispersive liquid–liquid microextraction combined with HPLC and fluorescence detection. Maize samples were extracted with methanol/water (80:20, v/v) and the extraction solution was then used as the dispersive solvent in the microextraction procedure. The analyte was rapidly transmitted to a small volume of ionic liquid and was determined by HPLC. Various parameters affecting the recovery of the mycotoxin were investigated, such as the type and volume of the extraction solvent, the type and volume of the dispersive solvent, the pH of the aqueous phase, the salt addition, and the time of vortex and centrifugation. Under the optimal experimental conditions, a good linearity of the analyte was obtained in the range of 1.0–1000.0 μg/L with the correlation coefficient of 0.9998. The limit of detection (S/N = 3) and quantification (S/N = 10) were 0.3 and 1.0 μg/kg, and the mean recoveries ranged from 83.5 to 94.9%, with a relative standard deviation less than 5.0%. The proposed method was demonstrated to be simple, cheap, quick, and highly selective and was successfully applied to the determination of zearalenone in maize products.  相似文献   

19.
A rapid and simple sample preparation method was developed for simultaneous determination of three triazine herbicides in honey samples. The selected herbicides were extracted from honey samples by ionic liquid dispersive liquid–liquid microextraction, separated on a C18 column (250 mm × 4.6 mm id, 5 μm) using acetonitrile and H2O as the mobile phase with gradient elution, and then detected by high‐performance liquid chromatography. The parameters, such as the type and volume of the extraction and disperser solvent, ion strength, pH, extraction time, and centrifuge time were optimized in order to provide the excellent extraction performance. Good linearity was showed for all the target herbicides over the tested concentration range with correlation coefficient higher than 0.994. Three spiked levels (0.005, 0.05, 0.10 mg/kg) were applied for determination of the recoveries of the targets in honey samples in the range of 80–103% with relative standard deviations not larger than 10.6%. The limits of quantification for the analytes ranged between 1.5 and 4.0 μg/kg. The developed method was applied for determination of the target compounds residues in real samples.  相似文献   

20.
A novel dispersive solid‐phase extraction combined with vortex‐assisted dispersive liquid–liquid microextraction based on solidification of floating organic droplet was developed for the determination of eight benzoylurea insecticides in soil and sewage sludge samples before high‐performance liquid chromatography with ultraviolet detection. The analytes were first extracted from the soil and sludge samples into acetone under optimized pretreatment conditions. Clean‐up of the extract was conducted by dispersive solid‐phase extraction using activated carbon as the sorbent. The vortex‐assisted dispersive liquid–liquid microextraction based on solidification of floating organic droplet procedure was performed by using 1‐undecanol with lower density than water as the extraction solvent, and the acetone contained in the solution also acted as dispersive solvent. Under the optimum conditions, the linearity of the method was in the range 2–500 ng/g with correlation coefficients (r) of 0.9993–0.9999. The limits of detection were in the range of 0.08–0.56 ng/g. The relative standard deviations varied from 2.16 to 6.26% (n = 5). The enrichment factors ranged from 104 to 118. The extraction recoveries ranged from 81.05 to 97.82% for all of the analytes. The good performance has demonstrated that the proposed methodology has a strong potential for application in the multiresidue analysis of complex matrices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号