首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A flow injection analysis-flame atomic absorption spectrometric method for the determination of cadmium in seawater was developed with the aim of yielding a sensitive assay with a low detection limit. The method employs a field flow preconcentration technique involving a minicolumn containing Amberlite XAD-4 impregnated with the complexing agent 4-(2-pyridylazo) resorcinol. A Plackett-Burman 2(7)x3/32 design for seven factors (sample pH, sample flow rate, eluent volume, eluent concentration, eluent flow rate, ethanol percentage in the eluent and minicolumn diameter) was carried out in order to find the significant variables affecting the field continuous preconcentration system (FCPS) and the flow injection elution manifold for cadmium determination in seawater samples by flame atomic absorption spectrometry. Cadmium can be preconcentrated with an enrichment factor of 1053 for a sample volume of 200 mL and a preconcentration time of 57 min. In these experimental conditions, the method provides a linear relationship between absorbance and cadmium concentration in the range from 22-1900 ng L(-1), with a detection limit (3SD) of 6 ng L(-1). The precision (expressed as relative standard deviation) for eleven independent determinations reached values of 8.9-0.8% in cadmium solutions of 50-700 ng L(-1). Analysis of certified reference materials (SLEW-3 and NASS-5) showed good agreement with the certified value. This procedure was applied to the determination of cadmium in seawater from Galicia (Spain).  相似文献   

2.
《Analytical letters》2012,45(14):2772-2782
Abstract

A simple and sensitive flow injection on line separation and preconcentration system coupled to hydride generation atomic fluorescence spectrometry (HG‐AFS) was developed for ultra‐trace bismuth determination in water and urine samples. The preconcentration of bismuth on a nylon fiber‐packed microcolumn was carried out based on the retention of bismuth complex with Bismuthiol I. A 15% (v/v) HCl was introduced to elute the retained analyte complex and merge with KBH4 solution for HG‐AFS detection. Under the optimal experimental conditions, an enhancement factor of 20 was obtained at a sample frequency of 24/h with a sample consumption of 13.0 ml. The limit of detection was 2.8 ng/l and the precision (RSD) for 11 replicate measurements of 0.1 µg/l Bi was 4.4%.  相似文献   

3.
A rapid and sensitive method based on polymer monolithic capillary microextraction combined on‐line with microconcentric nebulization inductively coupled plasma MS has been developed for the determination of trace/ultratrace rare earth elements in biological samples. For this purpose, the iminodiacetic acid modified poly(glycidyl methacrylate‐trimethylolpropane trimethacrylate) monolithic capillary was prepared and characterized by SEM and FTIR spectroscopy. Factors affecting the extraction efficiency, such as sample pH, sample flow rate, sample/eluent volume, and coexisting ions were investigated in detail. Under the optimal conditions, the LODs for rare earth elements were in the range of 0.08 (Er) to 0.97 ng/L (Nd) with a sampling frequency of 8.5 h?1, and the RSDs were between 1.5% (Sm) and 7.4% (Nd) (c = 20 ng/L, n = 7). The proposed method was successfully applied to the analysis of trace/ultratrace rare earth elements in human urine and serum samples, and the recoveries for the spiked samples were in the range of 82–105%. The developed method was simple, rapid, sensitive, and favorable for the analysis of trace/ultratrace rare earth elements in biological samples with limited sample volume.  相似文献   

4.
A method is developed for cadmium and zinc preconcentration on a minicolumn packed with a new chelating polymer sorbent. The effects of the test solution pH and volume, the sample matrix composition, the eluent volume, and the sample and eluent flow rates are studied. Zinc and cadmium in the eluate are determined by flame atomic absorption spectrometry. Under optimal conditions, the determined ion recovery is more than 95%. The detection limits (3σ, n = 20) are found to be 15.0 (Cd) and 17.2 (Zn) ng/mL. The developed method is employed for cadmium and zinc determination in samples of seawater and water obtained after oil pumping.  相似文献   

5.
A novel and efficient sample preconcentration technique based on the Fe3O4 magnetic nanoparticles (Fe3O4 MNPs) coated with silica (SiO2) has been developed for extraction and determination of sulpiride. The functionalized MNPs showed excellent dispersibility in aqueous solution and were applied to magnetic solid‐phase extraction of sulpiride from human urine and blood prior to high‐performance liquid chromatography analysis. The separation, preconcentration and desorption procedure was completed in 10 min. Optimal experimental conditions, including sample pH, the amount of the MNPs, eluent type and volume, and the ultrasonication time were studied and established. The method showed good linearity for the determination of sulpiride in the concentration range of 10–1000 ng/mL in urine and blood. The recovery of the method was in the range between 91.2 and 97.5%, and the limit of detection was 2 ng/mL for sulpiride in human blood and urine. The results indicated that the present procedure is a suitable pretreatment method for biological samples. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
A simple flame atomic absorption spectrometric (FAAS) procedure for the determination of lead, bismuth, gold, palladium and cadmium as impurities in Raney nickel and nickel oxide was developed using a preconcentration step on an Amberlite XAD-16 resin packed column. Lead, bismuth, gold, palladium and cadmium were quantitatively recovered and separated from a solution containing 1 M HCl and 0.3 M NaI by the column system. Effects of the various parameters such as reagent concentrations, sample volume, matrix effects, etc. have been investigated. Under optimized conditions, the relative standard deviation of the combined method of sample treatment, preconcentration and determination with FAAS (n = 7) is generally lower than 12%. The limit of detection (3s, n = 20) was between 10–270 ng/g. The results were used for separation and preconcentration of five trace elements from nickel matrices. Received: 8 February 2000 / Revised: 31 March 2000 / Accepted: 7 April 2000  相似文献   

7.
A novel sensitive and simple method for rapid and selective extraction, preconcentration and determination of uranyl as its 2,2′‐diamino‐4,4′‐bithiazole (DABTZ) complex by using octadecylsilica columns and spectrophotometry is presented. Extraction efficiency and the influence of flow rates of sample solution and eluent, pH, amount of DABTZ, type and least amount of eluent for elution of uranyl complex from columns, break‐through volume and limit of detection were evaluated. Also the effects of various cationic and anionic interferences on percent recovery of uranyl were studied. Average extraction efficiency of ca. 90% was obtained by elution of the column with minimal amount of solvent in the presence of interferences. The average preconcentration factor, 136 and a detection limit 0.32 ng·mL?1 were obtained. The method was applied to the recovery and determination of uranyl in different water samples.  相似文献   

8.
A solid‐phase extraction (SPE) method was developed to extract 14 pesticides simultaneously from environment samples using cigarette filter as the sorbent before gas chromatography‐mass spectrometry (GC‐MS) analysis. Parameters influencing the extraction efficiency, such as the sample loading flow rate, eluent and elution volume, were optimized. The optimum sample loading rate was 3 mL/min, and the retained compounds were eluted with 6 mL of eluent at 1 mL/min under vacuum. Good linearity was obtained for all the 14 pesticides (r2>0.99) from 0.1 to 20 μg/L for water and from 2 to 400 μg/kg for soil samples. The detection limits (signal‐to‐noise=3) of the proposed method ranged from 0.01 to 0.20 μg/L for water samples and from 0.42 to 6.95 μg/kg for soil samples. The developed method was successfully applied for determination of the analytes in real environmental samples, and the mean recoveries ranged from 76.4 to 103.7% for water samples and from 79.9 to 105.3% for soil samples with the precisions (relative standard deviation) between 2.0 and 13.6%.  相似文献   

9.
In this work, multiwalled carbon nanotubes were reacted with N‐[3‐(triet‐hoxysilyl)propyl]isonicotinamide to prepare pyridine‐functionalized carbon nanotubes. This novel sorbent was characterized by infrared spectroscopy, thermal and elemental analysis, and scanning electron microscopy. Functionalized carbon nanotubes were applied for the preconcentration and determination of copper ions using flame atomic absorption spectrometry. Various parameters such as sample pH, flow rate, eluent type and concentration, and its volume were optimized. Under optimal experimental conditions, the limit of detection, the relative standard deviation, and the recovery of the method were 0.65 ng/mL, 3.2% and 99.4%, respectively. After validating the method using standard reference materials, the new sorbent was applied for the extraction and determination of trace copper(II) ions in fruit samples.  相似文献   

10.
The method for the determination of zinc in alcohol fuel by flame atomic absorption spectrometry using a solid phase extraction system containing Moringa oleifera seeds as biosorbent material is described. The multivariate optimization of hydrodynamic variables was performed using a full factorial design (24) including the following factors: sorbent mass, preconcentration time, volume of eluent, sample flow rate, sample pH and eluent concentration. It was verified that the aforementioned factors as well as their conditions were statistically significant at the 95% confidence level. With the optimized conditions, the preconcentration factor and the limit of detection were estimated as 23 and 0.9 μg/L, respectively. The analytical curve was linear from 0 to up to 100 μg/L, with a correlation coefficient of 0.999. The developed method was successfully applied to alcohol fuel, and accuracy was assessed through recovery tests with results ranging from 96 to 100%.  相似文献   

11.
A simple flame atomic absorption spectrometric (FAAS) procedure for the determination of lead, bismuth, gold, palladium and cadmium as impurities in Raney nickel and nickel oxide was developed using a preconcentration step on an Amberlite XAD-16 resin packed column. Lead, bismuth, gold, palladium and cadmium were quantitatively recovered and separated from a solution containing 1 M HCl and 0.3 M NaI by the column system. Effects of the various parameters such as reagent concentrations, sample volume, matrix effects, etc. have been investigated. Under optimized conditions, the relative standard deviation of the combined method of sample treatment, preconcentration and determination with FAAS (n = 7) is generally lower than 12%. The limit of detection (3s, n = 20) was between 10–270 ng/g. The results were used for separation and preconcentration of five trace elements from nickel matrices.  相似文献   

12.
Using bamboo‐activated charcoal as SPE adsorbent, a novel SPE method was developed for the sensitive determination of tetrabromobisphenol A and bisphenol A in environmental water samples by rapid‐resolution LC‐ESI‐MS/MS. Important parameters influencing extraction efficiency, including type of eluent, eluent volume, sample pH, volume and flow rate, were investigated and optimized. Under the optimal extraction conditions (eluent: 8 mL methanol, pH: 7; flow rate: 4 mL/min; sample volume: 100 mL), low LODs (0.01–0.02 ng/mL), good repeatability (6.2–8.3%) and wide linearity range (0.10–10 ng/mL) were obtained. Satisfied results were achieved when the proposed method was applied to determine the two target compounds in real‐world environmental water samples with spiked recoveries over the range of 80.5–119.8%. All these facts indicate that trace determination of tetrabromobisphenol A and bisphenol A in real‐world environmental water samples can be realized by bamboo‐activated charcoal SPE‐rapid resolution‐LC‐ESI‐MS/MS.  相似文献   

13.
SPE joined with dispersive liquid–liquid microextraction based on solidification of floating organic drop (DLLME‐SFO) as a novel technique combined with GC with electron‐capture detection has been developed as a preconcentration technique for the determination of organochlorine pesticides (OCPs) in water samples. Aqueous samples were loaded onto multiwalled carbon nanotubes as sorbent. After the elution of the desired compounds from the sorbent by using acetone, the DLLME‐SFO technique was performed on the obtained solution. Variables affecting the performance of both steps such as sample solution flow rate, breakthrough volume, type and volume of the elution, type and volume of extraction solvent and salt addition were studied and optimized. The new method provided an ultra enrichment factor (8280–28221) for nine OCPs. The calibration curves were linear in the range of 0.5–1000 ng/L, and the LODs ranged from 0.1–0.39 ng/L. The RSD, for 0.01 μg/L of OCPs, was in the range of 1.39–13.50% (n = 7). The recoveries of method in water samples were 70–113%.  相似文献   

14.
Solid‐phase extraction coupled with dispersive liquid–liquid microextraction was developed as an ultra‐preconcentration method for the determination of four organophosphorus pesticides (isocarbophos, parathion‐methyl, triazophos and fenitrothion) in water samples. The analytes considered in this study were rapidly extracted and concentrated from large volumes of aqueous solutions (100 mL) by solid‐phase extraction coupled with dispersive liquid–liquid microextraction and then analyzed using high performance liquid chromatography. Experimental variables including type and volume of elution solvent, volume and flow rate of sample solution, salt concentration, type and volume of extraction solvent and sample solution pH were investigated for the solid‐phase extraction coupled with dispersive liquid–liquid microextraction with these analytes, and the best results were obtained using methanol as eluent and ethylene chloride as extraction solvent. Under the optimal conditions, an exhaustive extraction for four analytes (recoveries >86.9%) and high enrichment factors were attained. The limits of detection were between 0.021 and 0.15 μg/L. The relative standard deviations for 0.5 μg/L of the pesticides in water were in the range of 1.9–6.8% (n = 5). The proposed strategy offered the advantages of simple operation, high enrichment factor and sensitivity and was successfully applied to the determination of four organophosphorus pesticides in water samples.  相似文献   

15.
Pei Liang  Qian Li  Rui Liu 《Mikrochimica acta》2009,164(1-2):119-124
A new method has been developed for the determination of trace molybdenum based on separation and preconcentration with TiO2 nanoparticles immobilized on silica gel (immobilized TiO2 nanoparticles) prior to its determination by graphite furnace atomic absorption spectrometry (GFAAS). The optimum experimental parameters for preconcentration of molybdenum, such as pH of the sample, sample flow rate and volume, eluent and interfering ions, have been investigated. Molybdenum can be quantitatively retained by immobilized TiO2 nanoparticles at pH 1.0 and separated from the metal cations in the solution, then eluted completely with 0.5 mol L?1 NaOH. The detection limit of this method for Mo was 0.6 ng L?1 with an enrichment factor of 100, and the relative standard deviation (RSD) was 3.4% at the 10 ng mL?1 Mo level. The method has been applied to the determination of trace amounts of Mo in biological and water samples with satisfactory results.  相似文献   

16.
This paper describes the use of graphene oxide/silica modified with nitro‐substituted tris(indolyl)methane as a solid‐phase extraction sorbent for the determination of organic acids. The resultant graphene oxide/silica modified with nitro‐substituted tris(indolyl)methane was characterized by FTIR spectroscopy and adsorption experiments. Solid‐phase extraction parameters such as sorbent type, sample solution pH, sample loading rate, eluent salt concentration, eluent methanol concentration, elution rate, sample loading, and elution volume were optimized. The method showed good precision, accuracy, sensitivity, and linear response for organic acids analysis over a concentration range of 1–100 μg/L for benzoic acid, p‐methoxybenzoic acid, and salicylic acid and 5–100 μg/L for the remaining organic acids (cinnamic acid, p‐chlorobenzoic acid, and p‐bromobenzoic acid) with coefficients of determination (r2) of higher than 0.9957. Limits of detection from 0.50 to 1.0 μg/L for six organic acids were achieved. The developed method was successfully applied to determine organic acids in real samples.  相似文献   

17.
Preconcentration of trace amounts of diazinon by carbon mesoporous CMK‐3 in water and biological samples and measurement by high‐performance liquid chromatography were investigated. CMK‐3 was prepared using hexagonal SBA‐15 as the template. The synthesized materials were characterized by X‐Ray diffraction (XRD), Fourier transform infrared spectroscopy, Brunaur–Emmet–Teller, transmission electron microscopy and Boehm titration method. The preconcentration procedure was optimized using a multivariate optimization approach following a two‐stage process. The effect of analytical parameters including the amount of the CMK‐3 as an adsorbent, pH, type and volume of eluent and flow rate of eluent and sample were studied by a screening project, then the effective parameters were optimized by response surface methodology based on central composite design. The average extraction efficiency of diazinon under optimal conditions (CMK‐3 dosage = 25 mg, sample flow rate = 2.5 mL min−1, eluent flow rate = 1.25 mL min−1, volume of methanol as an eluent =3.5 mL and initial pH = 6) was 97.11%, which agrees well with the predicted response value (97.93%). The linearity of the method was in the range of 0.5–100 μg L−1 with a correlation coefficient of 0.997. Enrichment factor, limit of detection and limit of quantification were 285.7, 0.09 and 0.23 μg L−1, respectively. The relative standard deviation (RSD) under optimum conditions was 2.21% (n = 5). The proposed method was applied to determine diazinon in real water and biological samples. Recovery of diazinon from real samples was between 95.80 and 104.94% with an RSD of 0.19–4.65%. Thus, this method is suitable for the preconcentration and determination of diazinon in real water and biological samples.  相似文献   

18.
A new, simple, fast and reliable solid-phase extraction method has been developed for separation/preconcentration of trace amounts of Pb(II) using dithizone/sodium dodecyl sulfate-immobilized on alumina-coated magnetite nanoparticles, and its determination by flame atomic absorption spectrometry (FAAS) and graphite furnace atomic absorption spectrometry (GFAAS) after eluting with 4.0?mol?L?1 HNO3. Optimal experimental conditions including pH, sample volume, eluent concentration and volume, and co-existing ions have been studied and established. Under the optimal experimental conditions, the preconcentration factor, detection limit, linear range and relative standard deviation of Pb(II) using FAAS technique were 280 (for 560?mL of sample solution), 0.28?ng?mL?1, 1.4?C70?ng?mL?1 and 4.6% (for 10?ng?mL?1, n?=?10), respectively. These analytical parameters using GFAAS technique were 300 (for 600?mL of sample solution), 0.002?ng?mL?1, 0.006?C13.2?ng?mL?1 and 3.1% (for 5?ng?mL?1, n?=?10), respectively. The presented procedure was successfully applied for determination of Pb(II) content in opium, heroin, lipstick, plants and water samples.  相似文献   

19.
An on-line preconcentration procedure for the determination of bismuth by flame atomic absorption spectrometry (FAAS) has been described. Lewatit TP-207 chelating resin, including iminodiacetate group, packed in a minicolumn was used as adsorbent material. Bi(III) was sorbed on the chelating resin, from which it could be eluted with 3 mol L−1 HNO3 and then introduced directly to the nebulizer-burner system of FAAS. Best preconcentration conditions were established by testing different resin quantities, acidity of sample, types of eluent, sample and eluent solution volumes, adsorption and elution flow rates, and effect of interfering ions. The detection limit of the method was 2.75 μg L−1 while the relative standard deviation was 3.0% for 0.4 μg mL−1 Bi(III) concentration. The developed method has been applied successfully to the determination of bismuth in pharmaceutical cream, standard reference materials and various natural water samples with satisfactory results.  相似文献   

20.
In this work, a simple, fast, sensitive, and environmentally friendly method was developed for preconcentration and quantitative measurement of bisphenol A in water samples using gas chromatography with mass spectrometry. The preconcentration approach, namely biosorption‐based dispersive liquid‐liquid microextraction with extractant removal by magnetic nanoparticles was performed based on the formation of microdroplet of rhamnolipid biosurfactant throughout the aqueous samples, which accelerates the mass transfer process between the extraction solvent and sample solution. The process is then followed by the application of magnetic nanoparticles for easy retrieval of the analyte‐containing extraction solvent. Several important variables were optimized comprehensively including type of disperser solvent and desorption solvent, rhamnolipid concentration, volume of disperser solvent, amount of magnetic nanoparticles, extraction time, desorption time, ionic strength, and sample pH. Under the optimized microextraction and gas chromatography with mass spectrometry conditions, the method demonstrated good linearity over the range of 0.5–500 µg/L with a coefficient of determination of R= 0.9904, low limit of detection (0.15 µg/L) and limit of quantification (0.50 µg/L) of bisphenol A, good analyte recoveries (84–120%) and acceptable relative standard deviation (1.8–14.9%, = 6). The proposed method was successfully applied to three environmental water samples, and bisphenol A was detected in all samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号