首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 256 毫秒
1.
Tiny polyether ether ketone encased monolith frits have been prepared by modified catalytic sulfonation of the inner surface of polyether ether tubing (1.6 mm od, 0.25 mm id) followed by modified formation of organic monolith and cutting of the tubing into slices. The frit was placed below the central hole of the column outlet union and supported by a combination of a silica capillary (0.365 mm od, 0.05 mm id) and a polyether ether ketone sleeve (1.6 mm od, 0.38 mm id) tightened with a nut and a ferrule when the column was packed to prevent sinking of the frit element into the union hole (0.25 mm opening) otherwise. The column packed this way with the frits investigated in this study has shown better separation performance owing to the reduced frit volume in comparison to the column packed with a commercial stainless‐steel screen frit. This study establishes the strategy of disposable microcolumns in which cheap disposable frits are used whenever the column is re‐packed to yield columns of even better chromatographic performance than the columns with commercial frits.  相似文献   

2.
An in-line stripper column packed with iminodiacetate chelation resin is placed between the pump and injection valve and shown to remove metallic impurities from an HPLC system. We used a test procedure based on assessing the relative peak asymmetries of 2,2'-bipyridyl, a chelating analyte and 4,4'-bipyridyl, a non-chelating analyte. Results from use of polyether ether ketone (PEEK) and stainless steel pumps are evaluated. Analytical columns with titanium/PEEK and stainless steel frits are used to assess the role of frits in metallic contamination. We demonstrated that although metal-free pumping systems contribute significantly lower metallic impurities than stainless steel systems, metal is nevertheless present in the mobile phase and the chelating stripper columns were found useful in protecting the analytical columns from contamination. The stainless steel frits were not found to be significant contributors to the contamination.  相似文献   

3.
Fused‐silica capillary columns for high‐performance liquid chromatography with 320 and 250 μm inner diameter were prepared by slurry packing with 5 and 3 μm Nucleosil C18 stationary phase. Different types of mechanical and monolithic outlet frits were used and their influence on the resulting column performance was evaluated. Columns with quartz wool exhibited symmetrical peaks and low theoretical plate height, and the preparation time was short. The performance of monolithic frits varied based on type of monolith, length of the frit, and silanization procedure. The best frit performed similarly to the quartz wool ones, but the preparation took several hours. Their main advantage lies in the possibility of on‐column detection, because the detection window can be burnt immediately behind the frit.  相似文献   

4.
Two types of monolithic silica columns derivatized to form an ODS phase, one prepared in a fused silica capillary (SR‐FS) and the other prepared in a mold and clad with an engineering plastic (poly‐ether‐ether‐ketone) (SR‐PEEK), were evaluated. The column efficiency and pressure drop were compared with those of a column packed with 5‐μm ODS‐silica particles and of an ODS‐silica monolith prepared in a mold and wrapped with PTFE tubing (SR‐PTFE). SR‐FS gave a lower pressure drop than a column packed with 5‐μm particles by a factor of 20, and a plate height of 20 μm at a linear velocity below 1 mm/s. SR‐PEEK showed higher flow‐resistance than the other monolithic silica columns, but they still showed a minimum plate height of 8–10 μm and a lower pressure drop than popular commercial columns packed with 5‐μm particles. The evaluation of SR‐FS columns in a CEC mode showed much higher efficiency than in a pressure‐driven mode.  相似文献   

5.
This study reports the preparation of disposable microcolumns with welded metal frits for the first time. First, the bottom of glass‐lined stainless‐steel tubing of 30 cm length, 1.6 mm od, and 0.5 mm id was welded with a stainless‐steel screen frit of 1.6 mm diameter. A micro‐welding machine was used for this. Next, the column was connected to a slurry packer and packed with porous silica particles. Then, the inlet of the column was carefully welded with another frit. The column was tested for separation of a test mix composed of phenol, 2‐nitrophenol, acetophenone, aceanilide, and benzamide. Another column of the same physical dimension was also prepared with frits that were not welded to the column. The chromatographic performances of the two groups of columns (welded frits versus non‐welded frits) were examined. The columns of welded frits showed ca. 18% better separation efficiency (number of theoretical plates) than those of non‐welded frits.  相似文献   

6.
Existing methods for preparing frits in packed fused silica capillaries as used for electrochromatography and micro HPLC are not applicable to all silica based packing materials and involve a high thermal stress for both the stationary phase and the fused silica tubing including the polyimide coating. A new procedure for the production of such on-column frits under mild conditions by a sol-gel type reaction of polydimethoxysiloxane (PDMOS) is described in this paper. Reaction conditions were established for optimum mechanical stability and high permeability of the frits. Frits produced in this manner showed no noticeable effect on the overall efficiency.  相似文献   

7.
The aldol addition of dimethylsilyl enolates to aldehydes with alkali metal salt catalysts was examined. Several kinds of polyether derivatives were employed as solid solvents without a liquid one. In the presence of the polymer (Gr) obtained from poly(ethylene glycol) methyl ether methacrylate (PEGMA) or the crosslinked derivatives (GLs) from PEGMA, the aldol addition proceeded efficiently and yielded the product. The effective catalyst was lithium bromide for Gr and potassium bromide for GLs. The crosslinked polyether GLs were easily separated from the reaction mixture by simple filtration, which was preferable to simplifying the treatments of the reaction. The results demonstrated that the presence of polyether structures provided a favorable reaction environment and enabled the reaction under solvent‐free conditions. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2075–2084, 2005  相似文献   

8.
This study details the effects of poly(styrene-divinylbenzene) (PS-DVB) frits in micro-HPLC columns for the separation of neutral and basic compounds. The procedure comprised the optimization of separations with only monolith or conventional fritted columns followed by method transference to short monolith-fritted columns. It was observed that a superior separation was achieved with the new columns compared to silica-fritted-packed columns once triethylamine (TEA) was added in small percentages. The separation of basic and neutral compounds was achieved in fast analysis times in the isocratic mode.  相似文献   

9.
Derivatized β‐cyclodextrin (β‐CD) functionalized monolithic columns were prepared by a “one‐step” strategy using click chemistry. First, the intended derivatized β‐CD monomers were synthesized by a click reaction between propargyl methacrylate and mono‐6‐azido‐β‐CD and then sulfonation or methylation was carried out. Finally, monolithic columns were prepared through a one‐step in situ copolymerization of the derivatized β‐CD monomer and ethylene glycol dimethacrylate. The sulfated β‐CD‐based monolith was successfully applied to the hydrophilic interaction liquid chromatography separation of nucleosides and small peptides, while the methylated β‐CD‐functionalized monolith was useful for the separation of nonpolar compounds and drug enantiomers in capillary reversed‐phase liquid chromatography. The structures of the monomers were characterized by Fourier transform infrared spectroscopy and mass spectrometry. The physicochemical properties and column performance of monoliths were evaluated by scanning electron microscopy and micro high performance liquid chromatography. This strategy has considerable prospects for the preparation of other derivatized CD‐functionalized methacrylate monoliths.  相似文献   

10.
Lectin‐functionalized monolithic columns were prepared within polyether ether ketone (PEEK) columns (150 × 4.6 mm id) via transition metal‐catalyzed ring‐opening metathesis polymerization of norborn‐2‐ene (NBE) and trimethylolpropane‐tris(5‐norbornene‐2‐carboxylate) (CL) using the first‐generation Grubbs initiator RuCl2(PCy3)2(CHPh) (1, Cy = cyclohexyl) in the presence of a macro‐ and microporogen, i.e. of 2‐propanol and toluene. Postsynthesis functionalization was accomplished via in situ grafting of 2,5‐dioxopyrrolidin‐1‐yl‐bicyclo[2.2.1]hept‐5‐ene‐2‐carboxylate to the surface of the monoliths followed by reaction with α,ω‐diamino‐poly(ethyleneglycol). The pore structure of the poly(ethyleneglycol)‐ derivatized monoliths was investigated by electron microscopy and inverse‐size exclusion chromatography, respectively. The amino‐poly(ethyleneglycol) functionalized monolithic columns were then successfully used for the immobilization of lectin from Lens culinaris hemagglutinin. The thus prepared lectin‐functionalized monoliths were applied to the affinity chromatography‐based purification of glucose oxidase. The binding capacity of Lens culinaris hemagglutinin‐immobilized monolithic column for glucose oxidase was found to be 2.2 mg / column.  相似文献   

11.
In this work,a novel kind of particulate capillary precolumns with double-end polymer monolithic frits has been developed.Firstly,the polymer monolithic frit at one end was prepared via photo-initiated polymerization of a mixture of lauryl methacrylate and ethyleneglycol dimethacrylate with 1-propanol and 1,4-butanediol as porogens and 2,2-dimethoxy-2-phenylacetophenone as a photo-initiator in UV transparent coating capillary(100 μm i.d.).Subsequently,C18 particles(5 μm,100 A) were packed into the capillary,and sealed with the polymer monolithic frit at another end.To prevent the reaction of monomers and C18 particles,the packed C18 particles were masked during UV exposure.The loading capacity of such a precolumn was determined to be about 9 μg by frontal analysis with a synthetic peptide APGDR1 YVHPF as a model sample.Furthermore,two parallel precolumns were incorporated into a two-dimensional nano-liquid chromatography(2D nano-LC) system with dual capillary trap columns for peptide trapping and concentration.Compared to 2D nano-LC system with a single trap column,such two dimensional separations could be operated simultaneously to improve the analysis throughput.All these results demonstrated that such capillary precolumns with double frits would be promising for high-throughput proteome analysis.  相似文献   

12.
《先进技术聚合物》2018,29(7):2110-2120
A reactive monolith based on the polymerization of 3‐chloro‐2‐hydroxypropyl methacrylate, (HPMA‐Cl), with a crosslinking agent, ethylene glycol dimethacrylate (EDMA), was synthesized and post‐functionalized with a macromolecular ligand polyethyleneimine. Monolithic columns with controlled permeability and pore structure were prepared by free radical polymerization in the presence of a binary porogenic mixture of isopropanol and decanol. The presence of chloropropyl functionality in the pristine monolith allowed the synthesis of a post‐fuctionalized monolith carrying cationic groups that was used to control the magnitude of electroosmotic flow (EOF) in electrochromatographic separation. In the synthesis of pristine monoliths, the feed concentration of functional monomer (ie, HPMA‐Cl) was changed between 30 and 60 v/v % for obtaining cationic monoliths providing satisfactory electrochromatographic separation. The best electrochromatographic performance was obtained with the polyethyleneimine functionalized monolith prepared by using the pristine monolith obtained by 60% (v/v) monomer concentration. This monolith was used in reversed phase and hydrophilic interaction capillary electrochromatography modes for the separation of alkylbenzenes, polycyclic aromatic hydrocarbons, phenols, and nucleosides, using mobile phases with low acetonitrile (ACN) contents ranging between 20% and 35% (v/v). This ACN range was remarkably lower than the content of ACN used on the hydrophilic polymethacrylate‐based monoliths reported previously (ie, >90%). The plate heights up to 5.3 μm were obtained for the separation of nucleosides with the environmental friendly mobile phases whose ACN contents were also remarkably lower than that of similar polymethacrylate‐based monoliths.  相似文献   

13.
Two different methods to reinforce the poly(glycidyl methacrylate‐co‐ethylene dimethacrylate) HPLC monolithic columns of 3 mm id in a glass column reservoir were studied: composite columns with polymeric particles in the monolith and surface treatment of the reservoir wall. Of the two methods used to counter the mechanical instability and formation of flow channels (composite columns and column wall surface treatment), we demonstrated that proper column wall surface treatment was sufficient to solve both problems. Our study also indicated that no surface treatment is efficient, and of the methods studied silanization in acidified ethanol solution and constant renewal of the reaction mixture (dynamic mode) proved to be the most effective. As a result of this study, we have been able to prepare repeatable and durable methacrylate HPLC columns with good efficiencies.  相似文献   

14.
Monolithic columns were synthesized inside 1.02 mm internal diameter fused‐silica lined stainless‐steel tubing. Styrene and butyl, hexyl, lauryl, and glycidyl methacrylates were the functional monomers. Ethylene glycol dimethacrylate and divinylbenzene were the crosslinkers. The glycidyl methacrylate polymer was modified with gold nanoparticles and dodecanethiol (C12). The separation of alkylbenzenes was investigated by isocratic elution in 60:40 v/v acetonitrile/water. The columns based on polystyrene‐co‐divinylbenzene and poly(glycidyl methacrylate)‐co‐ethylene glycol dimethacrylate modified with dodecanethiol did not provide any separation of alkyl benzenes. The poly(hexyl methacrylate)‐co‐ethylene glycol dimethacrylate and poly(lauryl methacrylate)‐co‐ethylene glycol dimethacrylate columns separated the alkyl benzenes with plate heights between 30 and 60 μm (50 μL min?1 and 60°C). Similar efficiency was achieved in the poly(butyl methacrylate)‐co‐ethylene glycol dimethacrylate column, but only at 10 μL min?1 (0.22 mm s?1). Backpressures varied from 0.38 MPa in the hexyl methacrylate to 13.4 MPa in lauryl methacrylate columns (50 μL min?1 and 60°C). Separation of proteins was achieved in all columns with different efficiencies. At 100 μL min?1 and 60°C, the lauryl methacrylate columns provided the best separation, but their low permeability prevented high flow rates. Flow rates up to 500 μL min?1 were possible in the styrene, butyl and hexyl methacrylate columns.  相似文献   

15.
Polymeric capillaries made from polyether ether ketone (PEEK) or ethylene-tetrafluoroethylene copolymer (Tefzel) are considered as highly inert and chemically resistant materials used as standard equipment in HPLC and simulated moving bed (SMB) applications. During several racemate separations using a SMB unit equipped with these tubes a formation of micro-holes was observed. All separations had in common that a high content of an alkane was used in the mobile phase. The patterns of damage and possible reasons causing the leakages of the capillaries are discussed. Polymeric tubing had to be replaced by stainless steel capillaries for the enantiomer separations in order to ensure safety of workers, GMP status of products and control leakages.  相似文献   

16.
Y. X. Wu  C. B. Ching 《Chromatographia》2003,57(5-6):329-337
Summary Frits at both ends of a chromatographic column, especially for a preparative column, have significant influence on the flow distribution within the column and thus the column efficiency. However, frits have received little attention from chromatographers in the past. Here a theoretical study was conducted with the aid of CFD software FLUENT to investigate the effect of frits on the performance of homogeneous and heterogeneous chromatographic columns. A dimensionless number,FQ, was applied to characterize frit quality. This study visualized how frit quality affects the flow distribution and the concentration band, the shape of eluted pulse at the colum exit and column efficiency. Simulation results show that the development length of the flow distribution is related toFQ but has nothing to do with the packing heterogeneity. The curvature of the concentration band in a column depends onFQ and packing quality. This study shows column efficiency can be improved significantly by increasingFQ and/or frit permeability.  相似文献   

17.
Covalent immobilization of 3,5-dimethylphenylcarbamate derivative of cellulose was performed in situ onto native silica monoliths cladded in a 50 mm x 4.6 mm polyether ether ketone high-performance liquid chromatographic (HPLC) column. The covalent attachment of cellulose derivative in the range of 16-19% (w/w) was performed via an epoxide moiety. The column obtained by this technique combines the high enantiomer-resolving ability of the polysaccharide derivative with favourable dynamic properties of monolithic HPLC columns. The covalent attachment of the cellulose derivative enables this column to be used in combination with the mobile phases which are incompatible with coated-type polysaccharide columns due to solubility of chiral selector in some organic solvents.  相似文献   

18.
In this study, a series of poly(divinylbenzene-alkyl methacrylate) monolithic stationary phases, which were prepared by single step in situ polymerization of divinylbenzene and various alkyl methacrylates (butyl-, octyl-, or lauryl-methacrylate), were developed as separation columns of benzophenone compounds for capillary electrochromatography (CEC). In addition to the presence of plenty of benzene moieties, the stationary phases contained long and flexible alkyl groups on the surface. With an increase in the molecular length of alkyl methacrylate, the polymeric monolith, which had higher hydrophobicity, effectively reduced the peak tailing of benzophenones, but a weaker retention was observed. The unusual phenomenon was likely due to the π–π interaction between the aromatic compound and the polymeric material. The usage of longer alkyl methacrylate as reaction monomer limited the retention of aromatic compounds on the stationary phase surface, thus the π–π interaction between them was possibly reduced. Consequently, the retention time of aromatic compounds was markedly decreased with an increase in carbon length of alkyl methacrylate that was carried on the polymeric monolith. Compared to previous reports on polystyrene-based columns in which the peak-tailing problem was reduced by decreasing the benzene moieties on the stationary phase, this study demonstrated that the undesirable retention (peak-tailing) could also be improved by the inclusion of long alkyl methacrylate to the polystyrene-based columns.  相似文献   

19.
A new method of reproducible preparation of vinylic polymeric monolithic columns with a key step of covalently anchoring the monolith to PEEK surface is described. In order to chemically attach the polymer monolith to the tube wall, methacrylate functional groups were introduced onto PEEK surface by a three-step procedure, including surface etching, surface reduction and surface methacryloylation. The chemical state of the modified tubing surface was characterized by attenuated total reflectance infrared (ATR-IR) spectroscopy. It was found that the etching step is the key to successfully modifying the PEEK tubing surface. Poly(styrene-co-divinylbenzene) monoliths were in situ synthesized by thermally initiated free radical copolymerization within the confines of surface-vinylized PEEK tubings of dimensions close to ones conventionally used in HPLC and UHPLC (1.6 mm internal diameter, 10.0–12.5 cm length). Adhesion test was done by measuring the operating pressure drop, which the prepared stationary phases can withstand. Good pressure resistance, up to 140 bar/10 cm (flow rate 0.5 mL min−1, acetonitrile as a mobile phase), indicates strong bonding of monolith to the tubing wall. The monolithic material was proven to have a permeability of 1.7 × 10 −14 m2, applying acetonitrile–water 70:30 (v/v) as a mobile phase.  相似文献   

20.
Sporopollenin microparticles have been prepared form Lycopodium clavatum spores, defatted and incorporated into a porous methacrylate polymer monolith to enhance liquid chromatographic performance of different sets of small neutral molecules. A stable suspension between sporopollenin microparticles and porogenic solvents composed of 1-propanol and 1,4-butandiol has proved before preparation, and seven compositions with increasing sporopollenin microparticles were prepared inside fused silica tubing. After optimizing of the preparation conditions, the structure of the stationary phase was characterized by scanning electron microscopy, surface area analysis, thermodynamic study, short- and long-term precision, and hydrodynamic properties including mechanical stability, porosity, and permeability. The columns were successfully applied to improve the separation efficiency of different mixtures using capillary liquid chromatography. Addition of very small amount of sporopollenin microparticles to the methacrylate mixture enhanced the column efficiency from 3 to 5 times for ketonic and phenolic compounds and reduced the retention with the corresponding better resolution and peak shapes for all studied compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号