首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The C9‐position of quinine was modified by meta‐ or para‐substituted benzo‐18‐crown‐6, and immobilized on 3‐mercaptopropyl‐modified silica gel through the radical thiol‐ene addition reaction. These two chiral stationary phases were evaluated by chiral acids, amino acids, and chiral primary amines. The crown ether moiety on the quinine anion exchanger provided a ligand‐exchange site for primary amino groups, which played an important role in the retention and enantioselectivity for chiral compounds containing primary amine groups. These two stationary phases showed good selectivity for some amino acids. The complex interaction between crown ether and protonated primary amino group was investigated by the addition of inorganic salts such as LiCl, NH4Cl, NaCl, and KCl to the mobile phase. The resolution results showed that the simultaneous interactions between two function moieties (quinine and crown ether) and amino acids were important for the chiral separation.  相似文献   

2.
By connecting a quinine or quinidine moiety to the peptoid chain through the C9‐position carbamate group, we synthesized two new chiral selectors. After immobilizing them onto 3‐mercaptopropyl‐modified silica gel, two novel chiral stationary phases were prepared. With neutral, acid, and basic chiral compounds as analytes, we evaluated these two stationary phases and compared their chromatographic performance with chiral columns based on quinine tert‐butyl carbamate and the previous peptoid. From the resolution of neutral and basic analytes under normal‐phase mode, it was found that the new stationary phases exhibited much better enantioselectivity than the quinine tert‐butyl carbamate column; the peptoid moiety played an important role in enantiorecognition, which controlled the elution orders of enantiomers; the assisting role of the cinchona alkaloid moieties was observed in some separations. Under acid polar organic phase mode, it was proved that cinchona alkaloid moieties introduced excellent enantiorecognitions for chiral acid compounds; in some separations, the peptoid moiety affected enantioseparations as well. Overall, chiral moieties with specific enantioselectivity were demonstrated to improve the performance of peptoid chiral stationary phase efficiently.  相似文献   

3.
合成了一种新型奎宁-冠醚组合型手性固定相(QN-CR CSP)并用于氨基酸手性对映体的直接拆分,该固定相对12种氨基酸对映体有良好的手性拆分能力。基于氨基酸手性识别中离子交换和络合的协同作用,建立了一种新型的等温吸附模型。通过迎头特殊点洗脱法(FACP)测定色氨酸(Trp)在不同金属离子添加剂条件下的等温吸附线,验证了模型的合理性。流动相中的Li+、Na+、K+等金属离子与氨基酸竞争固定相中的冠醚络合位点,随着金属离子与冠醚的络合作用力和络合吸附平衡常数增大,固定相对Trp的手性拆分能力下降。该模型的建立对理解氨基酸在此类固定相中的手性保留行为以及固定相结构的进一步优化具有重要意义。  相似文献   

4.
In order to develop a chiral stationary phase (CSP), which has even higher separation ability than the corresponding commercially available crown ether based CSP (OA-8000 having a pseudo-18-crown-6 ether with an OMe group as a selector), chemically bonded type CSP having a phenolic OH group on a crown ring was developed. Normal mobile phases with or without acid additive can be used with this OH type CSP in contrast to the conventional OMe type CSP which has a neutral chiral selector. Enantiomers of 25 out of 27 amino compounds, including 20 amino acids, 5 amino alcohols, and 2 lipophilic amines, were efficiently separated on a column with this CSP. Nine amino compounds out of 27 were separated with better separation factors than the corresponding OMe type CSP. It is noteworthy that the chromatography on this CSP exhibited excellent enantiomer-separations for amines and amino alcohols when triethyl amine was used as an additive in the mobile phase. Comparison of enantiomer separation ability on this OH type of CSP and on the OMe type of CSP and correlation between the enantioselectivity in chiral chromatography and that of the corresponding model compounds in solution imply that the chiral separation arose from chiral recognition in host guest interactions.  相似文献   

5.
In this study, a series of novel CD chiral stationary phases were fabricated by immobilization of mono‐6A‐deoxy‐N3‐cyclodextrin onto silica surfaces followed by click regulation of CD primary face with 4‐pentynoic acid (acidic moiety), 2‐propynylamine (alkaline moiety) and L‐propargylglycine (chiral amino acid moiety), respectively. Enantioseparations of various kinds of racemates including dansyl‐amino acids, chiral lactides and diketones were conducted in reversed phase modes on these chiral stationary phases, where nearly forty diketones and chiral lactides were firstly separated on cyclodextrin stationary phases. 4‐Pentynoic acid moiety can make the retention ability decline while amine moiety significantly enhanced the retention ability of the stationary phases. For most of the studied analytes, the chiral amino acid moiety had the most positive effects on both the retention time and the resolution. The inclusion complexation between chiral analytes and cyclodextrins were also investigated by fluorescence method.  相似文献   

6.
7.
Tert‐butylcarbamoyl‐quinine and ‐quinidine weak anion‐exchange chiral stationary phases (Chiralpak® QN‐AX and QD‐AX) have been applied for the separation of sodium β‐ketosulfonates, such as sodium chalconesulfonates and derivatives thereof. The influence of type and amount of co‐ and counterions on retention and enantioresolution was investigated using polar organic mobile phases. Both columns exhibited remarkable enantiodiscrimination properties for the investigated test solutes, in which the quinidine‐based column showed better enantioselectivity and slightly stronger retention for all analytes compared to the quinine‐derived chiral stationary phase. With an optimized mobile phase (MeOH, 50 mM HOAc, 25 mM NH3), 12 of 13 chiral sulfonates could be baseline separated within 8 min using the quinidine‐derivatized column. Furthermore, subcritical fluid chromatography (SubFC) mode with a CO2‐based mobile phase using a buffered methanolic modifier was compared to HPLC. Generally, SubFC exhibited slightly inferior enantioselectivities and lower elution power but also provided unique baseline resolution for one compound.  相似文献   

8.
The enantiomeric pairs of cis and trans stereoisomers of cyclic β‐aminohydroxamic acids and their related cis and trans cyclic β‐amino acids containing two chiral centers were directly separated on four structurally related chiral stationary phases derived from quinine and quinidine modified with (R,R)‐ and (S,S)‐aminocyclohexanesulfonic acids. Applying these zwitterionic ion‐exchangers as chiral selectors, the effects of the composition of the bulk solvent, the acid and base additives, the structures of the analytes, and temperature on the enantioresolution were investigated. To study the effects of temperature and obtain thermodynamic parameters, experiments were carried out at constant mobile phase compositions in the temperature range 5–50°C. The differences in the changes in standard enthalpy Δ(ΔH°), entropy Δ(ΔS°), and free energy Δ(ΔG°) were calculated from the linear van't Hoff plots derived from the ln α versus 1/T curves in the studied temperature range. Results thus obtained indicated enthalpy‐driven separations in all cases. The sequence of elution of the enantiomers was determined and found to be reversed when ZWIX(–)™ was changed to ZWIX(+)™ or ZWIX(–A) to ZWIX(+A).  相似文献   

9.
《Tetrahedron: Asymmetry》2006,17(12):1883-1889
This paper reports the preparation and testing of a new pyridino-18-crown-6 ether based chiral stationary phase (CSP). The chiral crown ether was covalently bound to silica gel. Circular dichroism (CD) spectroscopy was used for probing the complex formation of the chiral crown ether with the enantiomers of protonated primary arylalkylamines. The (S,S)-dimethylpyridino-18-crown-6 ether selector having a terminal double bond was first transformed to a triethoxysilyl derivative by regioselective hydrosilylation, and then heated with spherical HPLC quality silica gel to obtain the CSP. The discriminating power of the HPLC column filled with the above CSP was tested by using the hydrogenperchlorate salts of racemic α-(1-naphthyl)ethylamine (1-NEA), α-(2-naphthyl)ethylamine (2-NEA) and the hydrochloride salts of aromatic α-amino acids and α-amino acids containing different aromatic side-chain protecting groups.  相似文献   

10.
This paper describes the preparation of new dress-up columns featuring reproducibly removable and replaceable chiral stationary phases. After synthesizing perfluroalkylated quinine and quinidine derivatives as chiral stationary phase compounds (F-CSPs), we adsorbed them reversibly onto a fluorous LC column through pumping of their solutions. Using this dress-up chiral column and fluorophobic elution of aqueous ammonium formate/MeOH mixtures, we could enantioseparate four racemic N-acetyl amino acids, dichlorprop, and sixteen fluorescent 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC)-derivatized amino acids. Dressing and undressing of the coated F-CSPs could be controlled by varying the fluorophilicity and fluorophobicity of the eluent. The relative standard deviations of the retention times, the retention factors, the number of theoretical plates, the enantioseparation factors, and the resolutions of each of four preparations of such dress-up columns were all less than or equal to 5.26% (from 20 repeated analyses); the reproducibilities from four different preparations were all less than or equal to 10.6%. These columns also facilitated highly sensitive and selective analyses of AQC-amino acids when detected using LC–MS/MS.  相似文献   

11.
Abstract

The direct optical resolution of six dipeptides into four stereoisomers each was achieved on an enantioselective crown ether column. An inclusion complex is formed between the stationary phase and the solute when using an acidic mobile phase. The acidic mobile phase serves to protonate the requisite primary amine of the dipeptide thereby allowing an attractive interaction between the ammonium functional group and the oxygens of the crown ether. Due to the differences in stability of the complexes formed, the four optical isomers elute at different times allowing the stereoisomeric separation. One of the factors affecting enantioselectivity is the distance between the primary amine functional group and the stereogenic center of the chiral moiety. Dipeptides are particularly useful molecules for the studying this “distance effect” since the bonding order of the two amino acids can be reversed. In addition to the enantiomeric separations of dipeptides possessing two stereogenic centers, the behavior of dipeptide separations possessing only one chiral center (i.e., with achiral glycine as one of the residues) is examined to gain additional insight into the mechanism and the effect of the proximity of the primary amine group to the chiral center.  相似文献   

12.
Abstract

Enantiomeric resolution of more than fifty racemic primary amines can be achieved on a column that utilizes a crown ether as a chiral selector. the racemic solute is solubilized in an acidic solvent, forming an ammonium ion from the primary amine functional group. an interaction between the lone pair electrons on the oxygens of the crown ether and the positive charge of the ammonium group leads to the formation of an inclusion complex. Due to the chirality of the crown ether there is stereoselective interaction resulting in enantiomeric separation. Excellent resolution is possible for amino acids, amino alcohols, amino esters and amines. Compounds are separated that were poorly resolved by conventional ligand exchange columns and by other means.  相似文献   

13.
Two novel types of crown ether capped β‐cyclodextrin (β‐CD) bonded silica, namely, 4′‐aminobenzo‐X‐crown‐Y (X=15, 18 and Y=5, 6, resp.) capped [3‐(2‐O‐β‐cyclodextrin)‐2‐hydroxypropoxy] propylsilyl‐appended silica, have been prepared and used as stationary phases in capillary electrochromatography (CEC) to separate chiral compounds. The two stationary phases have a chiral selector with two recognition sites: crown ether and β‐CD. They exhibit excellent enantioselectivity in CEC for a wide range of compounds. After inclusion of metal ions (Na+ or K+) from the running buffer into the crown ether units, the stationary phases become positively charged and can provide extra electrostatic interaction with ionizable solutes and enhance the dipolar interaction with polar neutral solutes. This enhances the host‐guest interaction with the solute and improves chiral recognition and enantioselectivity. Due to the cooperation of the anchored β‐CD and the crown ether, this kind of crown ether capped β‐CD bonded phase shows better enantioselectivity than either β‐CD‐ or crown ether bonded phases only. These new types of stationary phases have good potential for fast chiral separation with CEC.  相似文献   

14.
R Kuhn 《Electrophoresis》1999,20(13):2605-2613
This paper reviews chiral separations of primary amines by capillary electrophoresis and crown ether as chiral selector. Two possible mechanisms of chiral recognition by host-guest complexation are discussed: (i) The substituents of the crown ether act as barriers for the guest compounds, and (ii) lateral electrostatic interactions between host and guest occur. Experimental conditions affecting the separation are discussed in detail. A literature overview of practical applications is presented as well. More than 80 different primary amines were analyzed, whereupon the majority could be resolved using a screening method. It is shown that a synergistic effect on the resolution of chiral amines is observed when the chiral crown ether and cyclodextrins are simultaneously used in the same buffer system. This approach opens interesting perspectives for further method optimization.  相似文献   

15.
A non-aqueous capillary electrophoretic method developed with quinine and tert.-butyl carbamoylated quinine as chiral selectors for the enantioseparation of N-protected amino acids was applied to the investigation of other quinine derivatives as chiral additives. The optimum composition of the background electrolyte was found to be 12.5 mM ammonia, 100 mM octanoic acid and 10 mM chiral selector in an ethanol-methanol (60:40, v/v) mixture. Under these conditions, a series of chiral acids, as various benzoyl, 3,5-dinitrobenzoyl and 3,5-dinitrobenzyloxycarbonyl amino acid derivatives were investigated with regards to selectand-selector relationships and enantioselectivity employing quinine, quinidine, cinchonine, cinchonidine, tert.-butyl carbamoylated quinine, tert.-butyl carbamoylated quinidine, dinitrophenyl carbamoylated quinine and cyclohexyl carbamoylated quinine as chiral selector.  相似文献   

16.
The compound (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid (I) and its ytterbium(III) complex are evaluated as chiral NMR discriminating agents. The crown ether is a useful chiral discriminating agent for protonated amino acid esters, amines, and amino alcohols. The crown can also be used with neutral primary amines since amines are protonated through a neutralization reaction with a carboxylic acid moiety of the crown. Enantiodiscrimination with the crown is observed in methanol and acetonitrile. Addition of ytterbium(III) nitrate to crown-substrate mixtures causes upfield shifts in the NMR spectrum of the substrate and often enhances the enantiomeric discrimination. Evidence indicates that the ytterbium(III) bonds to the carboxylic acid moieties of the crown, but enhancements in enantiomeric discrimination result from either the different association constants of the enantiomers with the crown or diastereomeric nature of the resulting crown-substrate complexes. The ytterbium complex with the crown is suitable for use in methanol but precipitates in acetonitrile.  相似文献   

17.
《Tetrahedron: Asymmetry》1998,9(4):563-574
Homochiral crown ether (S,S)-1 containing 1-naphthyl groups as chiral barriers together with the phenol moiety was prepared by using (S)-3 as a chiral subunit which was resolved in enantiomerically pure form by lipase-catalyzed enantioselective acylation of (±)-3. Homochiral phenolic crown ether (S,S)-2, containing phenyl groups as chiral barriers, was also prepared from (S)-5 which was derived from (S)-mandelic acid. The association constants for their complexes with chiral amines in CHCl3 were determined at various temperatures by the UV–visible spectroscopic method demonstrating that the crown ethers (S,S)-1 and (S,S)-2 displayed the large ΔRSΔG values of 6.2 and 6.4 kJ mol−1, respectively, towards the amine 21 at 15°C. Thermodynamic parameters for complex formation were also determined and a linear correlation between TΔRSΔS and ΔRSΔH values was observed.  相似文献   

18.
The fluorescent tag 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC; AccQ Fluor reagent kit from Waters) is a commercial N-terminal label for proteinogenic amino acids (AAs), designed for reversed-phase separation and quantification of the AA racemates. The applicability of AQC-tagged AAs and AA-type zwitterionic compounds was tested for enantiomer separation on the tert-butyl carbamate modified quinine and quinidine based chiral stationary phases, QN-AX and QD-AX employing polar-organic elution conditions. The investigated test analytes included the enantiomers of the positional isomers of isoleucine (Ile), threonine, homoserine, and 4-hydroxyproline. Furthermore, β-AAs, cyclic, and heterocyclic AAs including trans-2-amino-cyclohexane carboxylic acid and trans-2-aminocyclohexyl sulfonic acid, phenylalanine derivatives substituted with halides with increasing electronegativity and 3,4-dihydroxyphenylalanine, cysteine-related derivatives including homocysteic acid, methionine sulfone, cysteine-S-acetic acid, and cysteine-S-acetamide as well as a small range of aminophosphonic acids were enantioseparated. A mechanistic interaction study of AQC-AAs in comparison with fluoresceine isothiocyanate-labeled AAs was performed. The chiral and chemoselective recognition processes involved in enantiomer separation and retention was systematically discussed. Special emphasis was set on the influential factors exhibited by the chemistry, branching position, and spatial properties of the investigated zwitterionic analytes. The general interest to separate and distinguish between different types of branched-chained AAs and metabolic side products thereof lies in the toxicity of some of these compounds, which makes for instance allo–Ile an attractive candidate in disease-related biomarker research.
Figure
Separation of the four AQC-tagged isomers of 4-hydroxyproline (trans-D, cis-D, trans-L and cis-L) on the chiral stationary phase QD-AX  相似文献   

19.
A new chiral stationary phase (CSP) containing thioester linkages was prepared by bonding (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid to mercaptopropylsilica gel. The chiral recognition ability of the new CSP was found to be greater than that of the previously reported CSP containing amide linkages in the resolution of the various α-amino acids that were tested, except for that of Met, Ser and Thr. In the resolution of racemic amines and amino alcohols, the new CSP was always better than the one containing amide linkages in terms of the separation factors (α) and the resolutions (RS). Given the identical elution orders on the two CSPs, it was concluded that the chiral recognition mechanism is not affected by the change of the linkage type. In addition, the new CSP was found to be quite stable under the acidic mobile phase conditions that were utilized, indicating that the thioester linkage is useful as a tethering group.  相似文献   

20.
A new ligand exchange chiral stationary phase (new CSP) containing residual silanol group‐protecting n‐octyl groups on the silica surface was prepared by treating a ligand exchange CSP (original CSP) based on sodium N‐[(R)‐2‐hydroxy‐1‐phenylethyl]‐N‐undecylaminoacetate bonded to silica gel with excess n‐octyltriethoxysilane. The new and original CSPs containing an identical amount of chiral selector were applied to the resolution of α‐amino acids and proton pump inhibitors (PPIs) including omeprazole, pantoprazole, lansoprazole, and rabeprazole. The separation factors (α) and resolutions (RS) were greater on the new CSP than on the original CSP except for the resolution of asparagine. The trends of the retention factors (k1) for the resolution of α‐amino acids on the new and original CSPs with the variation of the organic modifier content in aqueous mobile phase were opposite to those for the resolution of PPIs. Removal of the nonenantioselective interactions between the residual silanol groups and the analytes and the improved lipophilicity of the new CSP were proposed to be responsible for the improved chiral recognition ability of the new CSP and the different retention behaviors of the enantiomers between the new and original CSPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号