首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
This research highlights the application of highly efficient molecularly imprinted solid‐phase extraction for the preconcentration and analysis of melamine in aquaculture feed samples. Melamine‐imprinted polymers were synthesized employing methacrylic acid and ethylene glycol dimethacrylate as functional monomer and cross‐linker, respectively. The characteristics of obtained polymers were evaluated by scanning electron microscopy, Fourier transform infrared spectroscopy and binding experiments. The imprinted polymers showed an excellent adsorption ability for melamine and were applied as special solid‐phase extraction sorbents for the selective cleanup of melamine. An off‐line molecularly imprinted solid‐phase extraction procedure was developed for the separation and enrichment of melamine from aquaculture feed samples prior to high‐performance liquid chromatography analysis. Optimum molecularly imprinted solid‐phase extraction conditions led to recoveries of the target in spiked feed samples in the range 84.6–96.6% and the relative standard deviation less than 3.38% (n = 3). The aquaculture feed sample was determined, and there was no melamine found. The results showed that the molecularly imprinted solid‐phase extraction protocols permitted the sensitive, uncomplicated and inexpensive separation and pre‐treatment of melamine in aquaculture feed samples.  相似文献   

2.
By using density functional theory, we studied the interaction process between barbital and 2‐vinyl‐4,6‐diamino‐1,3,5‐triazine in acetonitrile at 333 K. Barbital and 2‐vinyl‐4,6‐diamino‐1,3,5‐triazine were used as the template and functional monomer, respectively. The molecularly imprinted polymer microspheres containing barbital and 2‐vinyl‐4,6‐diamino‐1,3,5‐triazine were synthesized through precipitation polymerization. After removing the template molecule barbital, the average diameter of the obtained molecularly imprinted polymers was 1.45 μm. By optimizing the molar ratio of barbital and the 2‐vinyl‐4,6‐diamino‐1,3,5‐triazine, the resulting molecularly imprinted polymers showed the highest adsorption for the barbital. The analysis of the Scatchard plot revealed that the dissociation constant (Kd) and apparent maximum adsorption quantity (Qmax) of the molecularly imprinted polymers were 30.69 mg/L and 8.68 mg/g, respectively. The study of selective adsorption showed that molecularly imprinted polymers exhibited higher selectivity for barbtital than that for 1,3‐dimethyl barbituric acid and pentobarbital. Herein, the studies can provide theoretical and experimental references for the barbital‐imprinted system.  相似文献   

3.
The quantum chemical method was applied for screening functional monomers in the rational design of salbutamol‐imprinted polymers. Salbutamol was the template molecule, and methacrylic acid was the single functional monomer. The LC‐WPBE/6–31G(d,p) method was used to investigate the geometry optimization, active sites, natural bond orbital charges, binding energies of the imprinted molecule, and solvation energy. The mechanism of action between salbutamol and methacrylic acid was also discussed. The theoretical results show that salbutamol interacts with functional monomers by hydrogen bonds, and the salbutamol‐imprinted polymers with a ratio of 1:4 (salbutamol/methacrylic acid) in acetonitrile had the highest stability. The salbutamol‐imprinted polymers were prepared by precipitation polymerization. The experimental results indicated that the maximum adsorption capacity for salbutamol toward molecularly imprinted polymers was 7.33 mg/g, and the molecularly imprinted polymers had a higher selectivity for salbutamol than for norepinephrine and terbutaline sulfate. Herein, the studies can provide theoretical and experimental references for the salbutamol molecular imprinted system.  相似文献   

4.
In this paper, a highly selective sample cleanup procedure combining molecular imprinting and solid-phase extraction (MI-SPE) was developed for the isolation of melamine in dairy products. The molecularly imprinted polymer (MIP) was prepared using melamine as the template molecule, methacrylic acid as the functional monomer and ethylene glycol dimethacrylate as the cross-linking monomer. The melamine imprinted polymer was used as selective sorbent for the solid-phase extraction of melamine from dairy products. An off-line MI-SPE method followed by high-performance liquid chromatography with diode-array detection for the detection of melamine was also established. The mean recoveries of melamine from ultra-heat treatment (UHT) milk and milk powders were 92.9-98.0% and 91.6-102.8%, respectively. Good linearity was obtained from 0.5 μM to 10 μM (r > 0.999) with a quantitation limit of 0.5 μmol/L (0.06 ppm) which was sufficient to analyse melamine at the maximum level permitted by U.S. Food and Drug Administration (1 ppm) in dairy products. It was demonstrated that the proposed MI-SPE-HPLC method could be applied to direct determination of melamine in dairy products.  相似文献   

5.
A molecular simulation method was introduced to compute the phenol–monomer pre‐assembled system of a molecularly imprinted polymer. The interaction type and intensity between phenol and monomer were evaluated by combining binding energy and charge transfer with complex conformation. The simulation results indicate that interaction energies are simultaneously affected by the type of monomer and the ratio between phenol and monomers. At the same time, we considered that by increasing the amount of functional monomer is not always better for preparing molecularly imprinter polymers. In this study, three kinds of novel magnetic phenol‐imprinted polymers with favorable specific adsorption effects were prepared by the surface imprinting technique combined with atom transfer radical polymerization. Various measures were selected to characterize the structure and morphology to obtain the optimal polymer. The characterization results show that the optimal polymer has suitable features for further adsorption process. A series of static adsorption experiments were conducted to analyze its adsorption performance, which follows the Elovich model from the kinetic analysis and the Sips equation from the isothermal analysis. To further verify the reliability and accuracy of the simulation results, the effects of different monomers on the adsorption selectivity were also determined. They display higher selectivity towards phenol than 4‐nitrophenol.The results from the simulation of the pre‐assembled complexes are in reasonable agreement with those from the experiment.  相似文献   

6.
A new magnetic molecularly imprinted polymer was coupled with ultra high performance liquid chromatography and tandem mass spectrometry for the selective determination of melamine in milk powder. The magnetic molecularly imprinted polymer has been prepared by using carbon nanotubes as the matrix, Fe3O4 particles as the magnetic ingredient, melamine as the template molecule, methacrylic acid as the functional monomer, ethylene glycol dimethacrylate as the cross‐linker and polyvinylpyrrolidone as the dispersant. The polymer was characterized with scanning electron microscopy, Fourier transform infrared spectroscopy and a physical property measurement system. The isothermal adsorption, kinetics adsorption, and selectivity were studied to evaluate the rebinding properties of the magnetic molecularly imprinted polymer. Various parameters affecting the extraction efficiency such as the amount of polymer, extraction time, and eluting solution were evaluated. The limit of detection was 0.00075 mg/kg. The relative standard deviations of the intraday and interday precision are 0.4–2.7 and 2.3–5.1%, respectively. The proposed method was successfully applied to determine melamine in different milk powder samples from different provenances, and satisfactory recoveries of 89.0–95.6% were obtained. This method has great significance for quality control and is simple and suitable for the rapid determination of melamine in milk powder.  相似文献   

7.
The proposed L ‐histidine sensing system composed of a molecularly imprinted solid‐phase microextraction component combined with a molecularly imprinted polymer sensor was used to determine critical levels of test analyte in a complex matrix of highly diluted human blood serum without any non‐specific sorption and false‐positive contributions. The molecularly imprinted polymer was a zwitterionic polymer brush derived from the disodium salt of EDTA and chloranil, grafted to solid‐phase microextraction material. The hyphenated approach was able to detect L ‐histidine quantitatively with a limit of detection as low as 0.0435 ng/mL (RSD = 0.2%, S/N = 3).  相似文献   

8.
The combination of molecularly imprinted polymer with high performance liquid chromatography has been developed to determine cyromazine and its metabolic melamine in some samples. However, the potential risk of template leakage used in molecularly imprinted polymer is a major disadvantage. To solve this problem, 2-(4,6-diamino-1,3,5-triazin-2-ylamino) ethanethiol disulfide, a molecule that shares the similar imprinting sites with cyromazine and melamine, was selected as pseudo template to prepare molecularly imprinted polymer. Methacrylic acid, ethylene glycol dimethyl acrylate and toluene were selected as functional monomer, crosslinker and porogen, respectively. The molecular recognition property and binding capability of cyromazine and melamine were evaluated by adsorption test and Scatchard analysis. The results showed that the molecularly imprinted polymer based on pseudo template had more excellent affinity and selectivity for cyromazine and melamine. The resulting molecularly imprinted polymer was used as a solid-phase extraction material to enrich cyromazine and melamine in egg and milk samples for high performance liquid chromatography analysis. The solid-phase extraction process was carefully optimized. It was found that when different concentration of cyromazine and melamine standards were spiked into samples, satisfactory recovery rate of cyromazine and melamine were obtained as 85.6-98.8% with relative standard deviation <5.5%.  相似文献   

9.
This article summarises our work on the development of voltammetric sensors based on molecularly imprinted polymers. Several recognition elements and integration strategies were used:1.membranes electropolymerised at the electrode surface; 2.casting of polymeric membranes by drop-coating a solution of pre-formed polymer (polyphosphazene) and template in a low-boiling-point solvent on to the electrode surface; 3.preparation of composite membranes containing conductive material (graphite or carbon black), acrylic-type molecularly imprinted polymers (small particle size), and PVC as binder; and 4.in-situ polymerisation of a thin layer of acrylic imprinted polymer deposited on the electrode surface by spin coating.All the options evaluated offer the possibility of controlling electrode characteristics such as hydrophobic/hydrophilic character, permeability, or film thickness, which are essential for obtaining good sensor performance.  相似文献   

10.
An easy-to-use colorimetric test-system for the efficient detection of creatinine in aqueous samples was developed. The test-system is based on composite molecularly imprinted polymer (MIP) membranes with artificial receptor sites capable of creatinine recognition. A thin MIP layer was created on the surface of microfiltration polyvinylidene fluoride (PVDF) membranes using method of photo-initiated grafting polymerization. The MIP layer was obtained by co-polymerization of a functional monomer (e.g. 2-acrylamido-2-methyl-1-propanesulfonic acid, itaconic acid or methacrylic acid) with N, N′-methylenebisacrylamide as a cross-linker. The choice of the functional monomer was based on the results of computational modeling. The creatinine-selective composite MIP membranes were used for measuring creatinine in aqueous samples. Creatinine molecules were selectively adsorbed by the MIP membranes and quantified using color reaction with picrates. The intensity of MIP membranes staining was proportional to creatinine concentration in an analyzed sample. The colorimetric test-system based on the composite MIP membranes was characterized with 0.25 mM detection limit and 0.25–2.5 mM linear dynamic range. Storage stability of the MIP membranes was estimated as at least 1 year at room temperature. As compared to the traditional methods of creatinine detection the developed test-system is characterized by simplicity of operation, small size and low cost.  相似文献   

11.
A molecularly imprinted polymer designed for the selective extraction of donepezil from serum samples was synthesized using a noncovalent molecular imprinting approach. The molecularly imprinted polymer was evaluated chromatographically and then its affinity for donepezil was confirmed by solid‐phase extraction. The optimal conditions for solid‐phase extraction were provided by cartridge conditioning using acidified water purified from a Milli‐Q system, sample loading under basic aqueous conditions, clean‐up using acetonitrile, and elution with methanol/tetrahydrofuran. Desirable molecular recognition properties of the molecularly imprinted polymer led to good donepezil recoveries (90–102%). The data indicated that the imprinted polymer has a perfect selectivity and affinity for donepezil and could be used for selective extraction and analysis of donepezil in human serum.  相似文献   

12.
Multimode reader has been generally applied in immunoassay, and in the proposed paper, the 96 well micro-plate was modified with molecularly imprinted melamine sol-gel film, based on which the highly selective and high throughput detection of melamine was achieved. Melamine was imprinted into silica sol-gel films directly using phenyltrimethoxysilane and methyltrimethoxysilane as functionalized organosilicon precursors. The binding characteristic of the imprinted film to melamine was evaluated by equilibrium binding experiments and the morphology was studied by scanning electronic microscope (SEM). Scatchard analysis was carried out to estimate the binding parameters of the imprinted film. The proposed method exhibited excellent selectivity because of specific recognition of MM by molecularly imprinted film. Under the optimum conditions, the chemiluminescence (CL) intensity had a linear relationship against the concentration of melamine over the range of 0.1-50 μg mL−1 with a lower detection limit of 0.02 μg mL−1.  相似文献   

13.
A seven‐channel molecularly imprinted polymer sensor array was prepared and characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, UV‐Vis spectroscopy, and nitrogen physisorption studies. The results revealed that the imprinted polymers have distinct‐binding affinities from those of structurally similar azo dyes. Analysis of the UV‐Vis spectral response patterns of the seven dye analytes against the imprinted polymer array suggested that the different selectivity patterns of the array were closely connected to the imprinting process. To evaluate the effectiveness of the array format, the binding of a series of analytes was individually measured for each of the seven polymers, made with different templates (including one control polymer synthesized without the use of a template). The response patterns of the array to the selected azo dyes were processed by canonical discriminant analysis. The results showed that the molecularly imprinted array was able to discriminate each analyte with 100% accuracy. Moreover, the azo dyes in two real samples, spiked chrysoidin in smoked bean curd extract and Fanta lime soda (containing tartrazine), were successfully classified by the array.  相似文献   

14.
The selective extraction of baicalin is important to its quality control especially when the matrices are complicated. In this work, a novel molecularly imprinted polymer was prepared for the selective extraction of baicalin in herbs. The molecularly imprinted polymer was synthesized by the copolymerization of 4‐vinyl pyridine and ethylene glycol dimethacrylate in the presence of baicalin by a precipitation polymerization method. After the optimization of parameters for molecularly imprinted polymer preparation, including the functional monomer, porogen, sampling solvent, and washing solvent, good selectivity was obtained, with an imprinting factor of about 4, which is much better than that achieved by the bulk‐polymerization method. The performances of the prepared molecularly imprinted polymers were systematically investigated, including adsorption kinetics, isotherm experiment, and Scatchard analysis. On the basis of the good adsorptive capability of the prepared molecularly imprinted polymer, it was also applied for the pretreatment of baicalin in Scutellaria baicalensis Georgi. The result showed that most of the matrices were removed and baicalin was selectively enriched.  相似文献   

15.
A novel strategy for preparing highly sensitive and easily renewable molecularly imprinted polymer (MIP) sensors was proposed. Using melamine (MA) as the template molecule, MIP particles were synthesized and embedded in a solid paraffin carbon paste to prepare the MIP sensor. MA was indirectly determined from the competition between the reactions of MA and horseradish peroxidase-labeled MA (MA-HRP) with the vacant cavities. The detection signals were amplified because of enzymatic reaction to the H2O2 catalytic oxidation. Sensitivity was markedly improved. Sensor renewal was achieved by a simple mechanical polishing of the sensitive film. The linear range for MA detection was 0.005–1 μmol L−1 and the detection limit was 0.7 nmol L−1. The molecularly imprinted solid paraffin carbon paste sensor was used for MA detection in milk samples.  相似文献   

16.
三氯生分子印迹传感器的制备及其性能研究   总被引:1,自引:0,他引:1  
应用分子印迹技术, 以邻苯二胺为功能单体、三氯生为模板, 用循环伏安法在玻碳电极表面合成了性能稳定的三氯生分子印迹聚合膜, 并用方波伏安法对此印迹传感器进行了分析应用研究.  相似文献   

17.
Porous molecularly imprinted polymer membranes and polymeric particles   总被引:1,自引:0,他引:1  
Porous free-standing molecularly imprinted polymer membranes were synthesised by the method of in situ polymerisation using the principle of synthesis of interpenetrating polymer networks and tested in solid-phase extraction of triazine herbicides from aqueous solutions. Atrazine-specific MIP membranes were obtained by the UV-initiated co-polymerisation of methacrylic acid, tri(ethylene glycol) dimethacrylate, and oligourethane acrylate in the presence of a template (atrazine). Addition of oligourethane acrylate provided formation of the highly cross-linked MIP in a form of a free-standing 60 μm thick flexible membrane. High water fluxes through the MIP membranes were achieved due to addition of linear polymers (polyethylene glycol Mw 20,000 and polyurethane Mw 40,000) to the initial mixture of monomers before the polymerization. As a result, typical semi-interpenetrating polymer networks (semi-IPNs) have been formed, where the cross-linked polymer was represented by the atrazine-specific molecularly imprinted polymer, while the linear one was represented by polyethylene glycol/polyurethane. Extraction of the linear polymers from the fully formed semi-IPNs resulted in formation of large pores in the membrane structure. At the same time, extraction of the template molecules lead to formation of the sites in the polymeric network, which in shape and arrangement of functional groups are complementary to atrazine. Reference polymeric membranes were prepared from the same mixture of monomers but in the absence of the template. Recognition properties of the MIP membranes were estimated in solid-phase extraction by their ability to selective re-adsorbtion of atrazine from 10−8 to 10−4 M aqueous solutions. The imprinting effect was demonstrated for both types of the MIP membranes and the influence of the type of the linear compound on their recognition properties was estimated. The recognition properties of the MIP membranes were compared to those of the MIP particles of the same composition. Morphology of the MIP membranes was investigated using the SEM microscopy. High fluxes of the developed membranes together with high affinity and adsorption capability make them an attractive alternative to MIP particles in separation processes.  相似文献   

18.
Molecularly imprinted polymers (MIPs) are prepared on the surface of modified silica gel using prometryne as a template, methacrylic acid as the functional monomer, ethylene glycol dimethacrylate as a crosslinker, and 2,2‐azobisisobutyronitrile as an initiator. The structure of the MIPs was characterized using SEM and FTIR spectroscopy. The selectivity of the MIPs for the template molecule prometryne was proven by adsorption experiments. Highly selective SPE cartridges of MIP particles were developed and an optimized prometryne procedure was developed for the enrichment and clean‐up of prometryne residues in water, soil, and wheat samples. The concentrations of prometryne in the samples were analyzed by HPLC. The average recoveries of prometryne spiked for water at 0.05~0.8 mg/L were 101.47–106.65% and the RSD was 2.63–4.71%. The average recoveries of prometryne spiked for soil at 0.05~0.8 mg/L were 87.34–94.91% with the RSD being 2.77–8.41%. The average recoveries of prometryne spiked for wheat plant at 0.2~2.0 mg/kg were 91.04–97.76% with the RSD being 6.53–10.69%. The method developed here can be regenerated and repeatedly used more than two dozen times.  相似文献   

19.
以三聚氰胺(MAM)为印迹分子,丙烯酰胺(AM)、甲基丙烯酸(MAA)、N,N-亚甲基双丙烯酰胺(MBA)和衣康酸(IA)为功能单体,二乙烯基苯(DVB)、乙二醇双甲基丙烯酸酯(EGDMA)和三羟甲基丙烷三甲基丙烯酸酯(TRIM)为交联剂,采用量子化学密度泛函理论的长程校正方法模拟并探讨了MAM与4种功能单体的成键作用位点、成键数目、印迹反应摩尔比及印迹作用机理.依据结合能(ΔE)优化了功能单体和交联剂,并借助分子中原子理论(AIM)揭示了MAM与功能单体印迹作用的本质.计算结果表明,MAM通过氢键与4种功能单体以摩尔比1∶6进行印迹聚合,其中IA与MAM形成的复合物结合能最低,结构最稳定;与TRIM和EGDMA交联剂相比,DVB与MAM结合能最低,更适合作为MAM-IA印迹聚合物的交联剂.采用沉淀聚合法合成MAM分子印迹聚合物(MAM-MIPs)并测定其吸附性,当MAM与IA印迹摩尔反应比为1∶6时,以DVB为交联剂时制备的MAM-MIPs吸附性最好,其微球平均粒径为195 nm;Scatchard分析结果表明,在所研究的浓度范围内MIPs对印迹分子MAM的结合位点是等价的,其最大表观吸附量Qmax为20.79mg/g,离解平衡常数Kd为58.82 mg/L;与环丙氨嗪(CYR)、三聚氰酸(CYA)和三聚硫氰酸(TRI)在牛奶中的吸附量相比,MAM-MIPs对MAM表现出较强的特异吸附能力.  相似文献   

20.
New materials based on molecularly imprinted polymers (MIPs) have been developed for use as sorbents in solid phase extraction to preconcentrate some urea herbicides. In the preconcentration step, different molecularly imprinted polymers were tested using methacrylic acid (MAA) and 2-(trifluoromethyl)acrylic acid (TFMAA) as functional monomers, and linuron and isoproturon as templates. The best results were obtained when the polymer was synthesised using MAA with isoproturon as template. Another parameter evaluated was the way in which the polymer was obtained. We observed that the imprinted polymers obtained by precipitation displayed a greater capacity to retain the phenylureas. Studies conducted using scanning electron microscopy (SEM) revealed that the bulk polymerisation method is far from ideal owing to the random shape and size distribution of the particles obtained, whereas when polymerisation was carried out in precipitation microspheres were obtained. In order to confirm the interaction between the functional monomer and the template, 1H NMR (CD2Cl2) analyses were conducted. The results obtained suggest that the hydrogen and/or nitrogen of the amino group of the template would be involved in the formation of hydrogen bonds with the functional monomer. The imprinted polymer obtained by precipitation polymerisation with MAA as functional monomer and isoproturon as template can be applied to preconcentrate phenylureas when the sample is dissolved in toluene. The proposed methodology was employed to evaluate polymer selectivity towards humic acids and towards other herbicides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号