首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Salidroside is an effective adaptogenic drug extracted from Rhodiola species. In the present study, a simple and efficient method for preparative separation and purification of salidroside from the Chinese medicinal plant Rhodiola rosesa was developed by adsorption chromatography on macroporous resins. The static adsorption isotherms and kinetics of some resins have been determined and compared for preparative separation of salidroside. According to our results, HPD‐200 resin is the most appropriate medium for the separation of salidroside and its adsorption data fit the Langmuir isotherm well. Dynamic adsorption and desorption were carried out in glass columns packed with HPD‐200 to optimize the separation process. After two adsorption and desorption runs, a product with a salidroside content of 92.21% and an overall recovery of 48.82% was achieved. In addition, pure lamellar crystals of salidroside with a purity of 99.00% could be obtained from this product. Its molecular weight was determined by an ESI‐MS method. The simple purification scheme avoids toxic organic solvents used in silica gel and high‐speed counter‐current chromatographic separation processes and thus increases the safety of the process and can be helpful for large‐scale salidroside production from Rhodiola rosea or other plant extracts.  相似文献   

2.
大孔吸附树脂分离提取多杀菌素   总被引:2,自引:0,他引:2  
采用大孔吸附树脂法分离提取多杀菌素.从11种大孔吸附树脂中筛选出DM11进行了静态、动态吸附性能实验,并考察了不同吸附、解吸条件的影响.结果表明,DM11的静态吸附容量为25.63mg/g(wet resin),其吸附等温线符合Langmuir吸附等温式.采用丙酮做洗脱剂,洗脱率为97.5%,动态吸附最佳吸附pH为9.5,吸附流速为6BV/h,穿透吸附容量为21.2mg/ml(wet resin),洗脱流速1.5BV/h.  相似文献   

3.
大孔吸附树脂分离纯化异甘草素的研究   总被引:3,自引:2,他引:1  
研究大孔吸附树脂分离纯化异甘草素的工艺条件及参数。通过研究HPD-600、D4020、D101、AB-8、NKA-II、AL-2和NKA-9树脂对异甘草素的吸附和解吸附能力,筛选最佳树脂为AB-8,并研究了其对异甘草素的吸附和解吸附性能,确定了最佳的吸附与解吸附工艺参数,吸附:pH=5,室温,流速1.5BV/h,溶液处理量为5BV;脱附:洗脱剂为70%的乙醇溶液,流速1BV/h,洗脱剂用量4.5BV。异甘草素样品溶液经AB-8树脂吸附与脱附后回收率为76.7%,纯度由2.02%提高到29.1%,提高了14.4倍。实验结果表明,AB-8树脂对异甘草素的吸附量大,脱附容易,可以应用于异甘草素的分离纯化。  相似文献   

4.
大孔树脂分离纯化丹酚酸的研究   总被引:2,自引:0,他引:2  
比较了D301R、D392、D380大孔阴离子交换树脂和X-5.AB-8、NKA-9、SP825大孔吸附树脂对丹参水溶性成分的吸附和解吸能力,筛选出效果较好的SP825进行分离纯化丹酚酸的研究.实验表明,大孔吸附树脂SP825能分离出纯度为95.32%的丹参素,在梯度洗脱条件下可得到以丹参素(水洗脱)和丹酚酸B(乙醇洗脱)为主的产品.在最佳吸附与解吸工艺参数下,丹参素、紫草酸、迷迭香酸、丹酚酸A和丹酚酸B的收率分别为:36.92%、80.39%、82.45%、43.07%和41.03%.  相似文献   

5.
大孔吸附树脂分离纯化迷迭香酸的研究   总被引:1,自引:0,他引:1  
采用大孔吸附树脂法研究迷迭香酸的精制工艺。筛选出适合的大孔吸附树脂,并对其分离纯化的条件进行考察。使用静态吸附法确定大孔吸附树脂NK109最适于迷迭香酸的精制。通过动态吸附性能的考察,确定最佳迷迭香酸上柱浓度838.6mg/L,流速为2.0BV/h上柱。通过动态解吸性能的考察,使用乙酸乙酯作为洗脱液,确定洗脱速度为1.0BV/h。利用大孔吸附树脂,迷迭香酸得到了较好的富集和纯化。纯化后的迷迭香酸纯度可以达到90%以上。  相似文献   

6.
Chicoric acid is the main phenolic active ingredient in Echinacea purpurea (Asteraceae), best known for its immune‐enhancing ability, as well as used as a herbal medicine. To achieve further utilization of medicinal ingredients from E. purpurea, an efficient preparative separation of chicoric acid was developed based on macroporous adsorption resin chromatography. The separation characteristics of several different typical macroporous adsorption resins were evaluated by adsorption/desorption column experiments, and HPD100 was revealed as the optimal one, which exhibited that the adsorbents fitted well to the pseudo‐second‐order kinetics model and Langmuir isotherm model, and the optimal process parameters were obtained. The breakthrough curves could be predicted and end‐point could be determined early. Besides, the optimal elution conditions of chicoric acid can be achieved using the quality control methods. As a result, the purity of chicoric acid was increased 15.8‐fold (from 4 to 63%) after the treatment with HPD100. The process of the enrichment and separation of chicoric acid is considerate, because of its high efficiency and simple operation. The established separation and purification method of chicoric acid is expected to be valuable for further utilization of E. purpurea according to product application in pharmaceutical fields in the future.  相似文献   

7.
大孔吸附树脂分离纯化金银花中黄酮类物质的研究   总被引:3,自引:0,他引:3  
比较了AB-8、S-8、NKA-9和D-101 4种大孔吸附树脂对金银花提取液中黄酮类物质的吸附及解吸附性能.在静态吸附试验基础上,筛选出效果较好的D-101树脂进行动态试验研究,结果表明,D-101树脂在30℃下对金银花黄酮类物质的静态吸附-动态解吸较优的工艺参数为:上样液pH值2.46,解吸液为95%乙醇,解吸液的流速为3mL/min,pH值11,4.5BV解吸液即可完全洗脱被树脂吸附的黄酮类物质,其解吸率高达98.00%.在试验研究范围内,树脂吸附金银花黄酮是自发性放热过程,并且符合Langmuir方程,此外树脂对黄酮的吸附动力学可用Pseudo-second-order模型较好地拟合,其表观吸附速率常数为Kso℃=3.43×10-2g/(mg·min).  相似文献   

8.
A green and efficient method for large‐scale preparation of glycyrrhizic acid from licorice roots was developed by combination of polyamide and macroporous resin. The entire preparation procedure consisted of two simple separation steps. The first step is to use polyamide resin to remove licorice flavoniods from the licorice crude extract. Subsequently, various macroporous resins were tried to purify glycyrrhizic acid, and HPD‐400 showed the most suitable adsorption and desorption properties. Under the optimized conditions, a large‐scale preparation of glycyrrhizic acid from licorice roots was carried out. A 20 kg raw material produced 0.43 kg of glycyrrhizic acid using green aqueous ethanol as the solvent. The purity of glycyrrhizic acid was increased from 11.40 to 88.95% with a recovery of 76.53%. The proposed method may be also extended to produce large‐scale other triterpenoid saponins from herbal materials.  相似文献   

9.
Study on Adsorption and Separation of Naringin with Macroporous Resin   总被引:1,自引:0,他引:1  
X-5 resin, with higher adsorption and easier desorption of naringin, was selected from five kinds of macroporous resins through static adsorption and desorption experiments. Effects of concentration, pH value, and flow rate of naringin extract on the adsorption of naringin by X-5 resin were studied. Meanwhile, the effect of these factors on the desorption of naringin from X-5 resin was also investigated. The experimental results show that the adsorption isotherm of naringin by X-5 resin can be described by the Langmuir isotherm equation. The static maximum adsorption capacity of naringin is 32.6 mg/g with naringin concentration at 2.7 g/L, while the dynamic adsorption capacity of naringin is 23.8 mg/g with naringin extract flow rate at two times that of resin volume per hour. The optimal eluant is 60% (v/v) ethanol-water with pH value of 10. The desorption ratio will rise to more than 85% when the flow rate of this optimal eluant is one to two times that of resin volume per hour. Translated from Journal of Central South University (Science and Technology)  相似文献   

10.
Jia G  Lu X 《Journal of chromatography. A》2008,1193(1-2):136-141
In present study, the performance and separation characteristics of five macroporous resins for the enrichment and purification of asiaticoside and madecassoside from Centella asiatica extracts have been evaluated. The adsorption and desorption properties of total triterpene saponins (80% purity) on macroporous resins including HPD100, HPD300, X-5, AB-8 and D101 have been compared. According to our results, HPD100 offered higher adsorption and desorption capacities and higher adsorption speed for asiaticoside and madecassoside than other resins. Column packed with HPD100 resin was used to perform dynamic adsorption and desorption tests to optimize the separation process of asiaticoside and madecassoside from C. asiatica extracts. After the treatment with gradient elution on HPD100 resin, the content of madecassoside in the product increased from 3.9 to 39.7%, and the recovery yield was 70.4%; for asiaticoside the content increased from 2.0 to 21.5%, and the recovery yield was 72.0%. The results showed that HPD100 resin revealed a good ability to separate madecassoside and asiaticoside, and the method can be referenced for the separation of other triterpene saponins from herbal raw materials.  相似文献   

11.
大孔吸附树脂对款冬花总黄酮的吸附分离特性   总被引:1,自引:0,他引:1  
选择6种大孔吸附树脂,比较其对款冬花总黄酮的吸附量,解吸率及吸附动力学特性,筛选出较优的款冬花黄酮吸附树脂.结果表明:在静态吸附和动态吸附实验中均以SP825具有较优的吸附和解吸效果.  相似文献   

12.
从7种极性不同的大孔树脂中筛选出一种对酸枣仁三萜总皂苷具有良好吸附和解吸性能的树脂—三菱SP700树脂。静态实验中,该树脂的最高吸附容量可达131.0mg皂苷/g树脂,皂苷在树脂表面的吸附符合Langmuir模型,用体积分数为90%的乙醇解吸得率最高可达97.8%;动态实验中,样液在膨胀床模式下上样,树脂的平均动态吸附容量为15mg皂苷/g树脂,上样后,用体积分数分别为50%和90%的乙醇溶液进行分段洗脱,洗脱得率最高可达到95.1%,经过纯化的皂苷提取物的含量提高了4倍。SP700大孔吸附树脂作为一种对酸枣仁中三萜总皂苷进行纯化的介质具有良好的性能和应用价值。  相似文献   

13.
An effective and simple method was established for the separation and enrichment of steroidal saponins from Trillium tschonoskii Maxim. The adsorption and desorption properties of seven macroporous resins were investigated. Among the tested resins, AB‐8 resin showed the best adsorption and desorption capacities. The adsorption of steroidal saponins on AB‐8 at 25°C was quite consistent with both the Freundlich isotherm model and the pseudo‐second‐order kinetics model. By optimizing the dynamic adsorption and desorption parameters, the content of steroidal saponins increased from 5.20% in the crude extracts to 51.93% in the final product, with a recovery yield of 86.67%. Furthermore, by scale‐up separation, the concentration and recovery of total steroidal saponins were 43.8 and 85.5%, respectively, which suggested that AB‐8 resin had great industrial and pharmaceutical potential because of its high efficiency and cost‐effectiveness. In addition, a high‐performance liquid chromatography method for the simultaneous determination of eight steroidal saponins was established for the first time, which was employed to qualitatively and quantitatively analyze the final product. Based on the methodological validation results, the high‐performance liquid chromatography method can be widely applied to the quality control of steroidal saponins from Trillium tschonoskii Maxim due to its excellent accuracy, stability, and repeatability.  相似文献   

14.
选择6种大孔吸附树脂,比较其对大叶白蜡种子鞣质的吸附量和解吸率,筛选出较优的大叶白蜡种子鞣质吸附剂,并通过单因素实验和正交实验,对其静态吸附-解吸和动态吸附性能进行考察。实验结果表明,NKA-9树脂适合大叶白蜡种子鞣质的吸附分离,其最佳的吸附工艺参数为:上样浓度为3mg/mL、pH值为4、上样量为7BV、上样流速为1BV/h。  相似文献   

15.
In the present study, the performance and separation characteristics of eight macroporous resins for the separation of luteolin (LU) from pigeonpea leaves extracts have been evaluated. The adsorption and desorption properties of LU on macroporous resins including AB-8, NKA-9, NKA-2, D3520, D101, H1020, H103 and AL-2 have been compared. AL-2 resin offers the best adsorption and desorption capacity for LU than other resins based on the research results, and its adsorption data at 25 degrees C fit best to the Freundlich isotherm. Dynamic adsorption and desorption experiments have been carried out with the column packed by AL-2 resin to optimize the separation process of LU from pigeonpea leaves extracts. The optimum parameters for adsorption were sample solution LU concentration 65.5 microg/ml, pH 5, processing volume 3 BV, flow rate 1.5BV/h, temperature 25 degrees C; for desorption were elution solvent ethanol-water (50:50, v/v) 2 BV and followed by ethanol-water (60:40, v/v) 2 BV, and flow rate 1BV/h. After treated with AL-2 resin, the LU content in the product was increased 19.8-fold from 0.129% to 2.55%, with a recovery yield of 78.54%. The results showed that AL-2 resin revealed a good ability to separate LU. Therefore, we conclude that results in this study may provide scientific references for the large-scale LU production from pigeonpea or other plants extracts.  相似文献   

16.
大孔吸附树脂分离纯化荔枝核黄酮类化合物的研究   总被引:8,自引:2,他引:6  
比较了D101、D3520、NKAII、AB-8、X-5、HPD-100、HPD-300、HPD-600等8种大孔吸附树脂对荔枝核中抗乙肝活性成分黄酮类化合物的吸附及解吸性能,筛选出效果较好的HPD-300树脂进行分离纯化实验研究。实验表明,HPD-300树脂能够有效地吸附和解吸荔枝核黄酮类化合物,并确定了最佳的吸附和解吸工艺参数。采用最佳的工艺条件分离纯化荔枝核黄酮类化合物,黄酮类化合物的含量由31%提高到82%。  相似文献   

17.
阿尔泰狗哇花总皂苷的提取与纯化   总被引:1,自引:0,他引:1  
对阿尔泰狗哇花总皂苷的提取与纯化工艺进行了研究.利用正交设计确定了提取温度、乙醇浓度、溶剂用量、时间及次数等提取工艺参数.比较了五种大孔吸附树脂和聚酰胺树脂对阿尔泰狗哇花总皂苷的吸附与脱附性能.结果表明,在优化的提取条件下提取,经AB-8大孔吸附树脂柱层析分离纯化,制得总皂苷产品,其含量比原药材提高约7倍多,进一步完善后可适用于工业化生产.  相似文献   

18.
In present study, the performance and separation characteristics of 21 macroporous resins for the enrichment and purification of deoxyschizandrin and γ-schizandrin, the two major lignans from Schisandra chinensis extracts, were evaluated. According to our results, HPD5000, which adsorbs by the molecular tiers model, was the best macroporous resin, offering higher adsorption and desorption capacities and higher adsorption speed for deoxyschizandrin and γ-schizandrin than other resins. Columns packed with HPD5000 resin were used to perform dynamic adsorption and desorption tests to optimize the technical parameters of the separation process. The results showed that the best adsorption time is 4 h, the rate of adsorption is 0.85 mL/min (4 BV/h) and the rate of desorption is 0.43 mL/min (2 BV/h). After elution with 90% ethanol, the purity of deoxy-schizandrin increased 12.62-fold from 0.37% to 4.67%, the purity of γ-schizandrin increased 15.8-fold from 0.65% to 10.27%, and the recovery rate was more than 80%.  相似文献   

19.
大孔吸附树脂结合酶解法分离纯化虎杖中白藜芦醇的研究   总被引:1,自引:0,他引:1  
研究了大孔吸附树脂结合酶解法提取和纯化虎杖中白藜芦醇的方法,采用HPLC法测定虎杖中白藜芦醇的含量,考查了β-糖苷酶对虎杖药材酶解前后白藜芦醇含量的变化,并经静态吸附考察了4种树脂,最后确定以H1020作为提取分离白藜芦醇的树脂.此树脂吸附量较高,脱附容易,有利于得到质量较好的白藜芦醇产品,经该树脂吸附解吸,饱和吸附量可达51.4mg/g,解吸率达92.5%.大孔树脂分离纯化白藜芦醇的含量可达71.5%,而上柱前粗提物中白藜芦醇含量为8.71%,说明采用本法分离纯化虎杖中白藜芦醇是可行的.  相似文献   

20.
In this study, an effective method was developed for the isolation and enrichment of Ginkgo biloba extract by continuous chromatography system. The adsorption and desorption ratio of flavonoids as main index, the best macroporous resin was screened out from six resins by static adsorption and desorption tests. At the same time the adsorption and desorption parameters were optimized by dynamic adsorption and desorption tests. Under optimal parameters, five operations consisting of loading, washing, desorbing, regenerating, and balancing were integrated across the continuous chromatography system for the purpose of refining 66 L of crude extract solution. The results were as follows, 198.22 g of Ginkgo biloba extracts was produced, which contained 65.83 g of flavonoids and 15.44 g of lactones. The content of flavonoids and lactones increased from 2.76 and 0.72% in the crude extract to 33.21 and 7.79%, with a recovery yield of 91.26 and 81.21%. Methodology validation showed that the proposed method had high stability and reproducibility. Compared with the traditional macroporous resin method, the proposed method had a short processing time and low solvent consumption. Our studies indicated that the newly developed method is an effective procedure for the isolation and enrichment of Ginkgo biloba extract.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号