首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An efficient on‐site extraction technique to determine carcinogenic heterocyclic aromatic amines in seawater has been reported. A micro‐solid‐phase extraction device placed inside a portable battery‐operated pump was used for the on‐site extraction of seawater samples. Before on‐site applications, parameters that influence the extraction efficiency (extraction time, type of sorbent materials, suitable desorption solvent, desorption time, and sample volume) were investigated and optimized in the laboratory. The developed method was then used for the on‐site sampling of heterocyclic aromatic amines determination in seawater samples close to distillation plant. Once the on‐site extraction completed, the small extraction device with the analytes was brought back to the laboratory for analysis using high‐performance liquid chromatography with fluorescence detection. Based on the optimized conditions, the calibration curves were linear over the concentration range of 0.05–20 μg/L with correlation coefficients up to 0.996. The limits of detection were 0.004–0.026 μg/L, and the reproducibility values were between 1.3 and 7.5%. To evaluate the extraction efficiency, a comparison was made with conventional solid‐phase extraction and it was applied to various fortified real seawater samples. The average relative recoveries obtained from the spiked seawater samples varied in the range 79.9–95.2%.  相似文献   

2.
Extraction of endogenous compounds and drugs and their corresponding metabolites from complex matrices, such as biofluids and solid tissues, requires adequate analytical approach facilitating qualitative and quantitative analysis. To this end, solid‐phase microextraction has been introduced as modern technology that is capable of efficient and high‐throughput extraction of compounds due to its ability to amalgamate sampling, extraction, and pre‐concentration steps, while requiring minimal use of organic solvents. The ability of solid‐phase microextraction to enable analyses on small‐volume biological samples and growing availability of biocompatible solid‐phase microextraction coatings make it a highly useful technology for variety of applications. For example, solid‐phase microextraction is particularly useful for identifying biomarkers in metabolomics studies, and it can be successfully applied in pharmaceutical and toxicological studies requiring the fast and sensitive determination of drug levels, especially those that are present at low levels in biological matrices such as plasma, urine, saliva, and hair. Moreover, solid‐phase microextraction can be directly applied in in vivo studies because this extraction technique is non‐exhaustive and its biocompatible probes offer minimal invasiveness to the analyzed system. In this article, we review recent progress in well‐established solid‐phase microextraction technique for in vitro and in vivo analyses of various metabolites and drugs in clinical, pharmaceutical, and toxicological applications.  相似文献   

3.
In this study, a novel technique is proposed for preparation of an efficient and unbreakable metal‐wire‐supported solid‐phase microextraction fiber. A sol–gel film was deposited on electrophoretically deposited carbon nanotubes on a stainless‐steel wire. The applicability of the fiber was evaluated through the extraction of some aromatic pollutants as model compounds from the headspace of aqueous samples in combination with gas chromatography and mass spectrometry. The parameters affecting the structure and extraction efficiency of the fiber (including the type of solvent, time, and potential for electrophoretic deposition) and the parameters affecting the extraction efficiency (such as coating type, salt content, extraction temperature, and time) were investigated. The results showed that the film thickness will be increased by increasing the potential and time duration. Finally, the characterization of the deposited film was accomplished by scanning electron microscopy and thermogravimetric analysis. After the optimization of the extraction parameters, the limit of detection of less than 20 pg/mL was achieved, and the calibration curves were all linear (r 2 ≥ 0.9737), in the range from 50 to 500 pg/mL. The solid‐phase microextraction fiber has a high mechanical strength; good stability and long service life, making it potentially applicable in the extraction of trace polycyclic aromatic hydrocarbons from aqueous samples.  相似文献   

4.
A temperature‐controlling device for in‐tube solid‐phase microextraction was developed based on thermoelectric cooling and heating. This device can control the temperature of the capillary column from 0 to 100°C by applying a voltage to a Peltier cooler or stainless steel tube. The extraction temperatures for angiotensin I, propranolol, and ranitidine were optimized. In all cases, setting the temperature to 10°C for extraction achieved the best extraction efficiency. Desorption showed minimum peak broadening at 70°C, contributing to better chromatographic performance. Propranolol was selected as a model compound to compare the performance of temperature‐controlled in‐tube solid‐phase microextraction at optimized conditions. Calibration curves exhibited good linearity (R2 > 0.999) over the studied range, and the limit of detection and limit of quantification were about three times lower than those obtained at standard conditions (30°C extraction and desorption).  相似文献   

5.
1‐Hexadecyl‐3‐methylimidazolium bis(trifluoromethylsulfonyl)imide is a solid‐phase ionic organic material under ambient temperature and is considered as a kind of “frozen” ionic liquid. Because of their solid‐state and ultra‐hydrophobicity, “frozen” ionic liquids are able to be confined in the pores of hollow fiber, based on which a simple method was developed for the hollow‐fiber solid‐phase microextraction of dichlorodiphenyltrichloroethane and its main metabolites. Under optimized conditions, the proposed method results in good linearity (R 2 > 0.9965) over the range of 0.5−50 μg/L, with low limits of detection and quantification in the range of 0.33−0.38 and 1.00−1.25 μg/L, respectively. Intra‐ and interday precisions evaluated by relative standard deviation were 3−6 and 1−6%, respectively. The spiked recoveries of dichlorodiphenyltrichloroethane and its main metabolites from real water samples were in the range of 64−113 and 79−112%, respectively, at two different concentration levels. The results suggest that “frozen” ionic liquids are promising for use as a class of novel sorbents.  相似文献   

6.
Silicon carbide has excellent properties, such as corrosion resistance, high strength, oxidation resistance, high temperature, and so on. Based on these properties, silicon carbide was coated on stainless‐steel wire and used as a solid‐phase microextraction coating, and polycyclic aromatic hydrocarbons were employed as model analytes. Using gas chromatography, some important factors that affect the extraction efficiency were optimized one by one, and an analytical method was established. The analytical method showed wide linear ranges (0.1–30, 0.03–30, and 0.01–30 μg/L) with satisfactory correlation coefficients (0.9922–0.9966) and low detection limits (0.003–0.03 μg/L). To investigate the practical application of the method, rainwater and cigarette ash aqueous solution were collected as real samples for extraction and detection. The results indicate that silicon carbide has excellent application in the field of solid‐phase microextraction.  相似文献   

7.
Polypropylene hollow fibers as the adsorbent were directly filled into a polyetheretherketone tube for in‐tube solid‐phase microextraction. The surface properties of hollow fibers were characterized by a scanning electron microscope. Combined with high performance liquid chromatography, the extraction tube showed good extraction performance for five environmental estrogen hormones. To achieve high analytical sensitivity, four important factors containing sampling volume, sampling rate, content of organic solvent in sample, and desorption time were investigated. Under the optimum conditions, an online analysis method was established with wide linear range (0.03–20 µg/L), good correlation coefficients (≥0.9998), low limits of detection (0.01–0.05 µg/L), low limits of quantitation (0.03–0.16 µg/L), and high enrichment factors (1087–2738). Relative standard deviations (n = 3) for intraday (≤3.6%) and interday (≤5.1%) tests proved the stable extraction performance of the material. Durability and chemical stability of the extraction tube were also investigated, relative standard deviations of all analytes were less than 5.8% (n = 3), demonstrating the satisfactory stability. Finally, the method was successfully applied to detect estrogens in real samples.  相似文献   

8.
Natural cotton fiber was applied as a green extraction material for in‐tube solid‐phase microextraction. Cotton fibers were characterized by scanning electron microscope. A bundle of cotton fibers (685 mg, 20 cm) was directly packed into a polyetheretherketone tube (i.d. 0.75 mm) to get the extraction device. It was connected into high performance liquid chromatography, building an online extraction and dectection system. Through the online analysis system, several polycyclic aromatic hydrocarbons were used as the targets to evaluate the extraction performace of the device. In order to get high extraction efficiency and sensitivity, the extraction and desorption conditions were optimized. Under the optimum conditions, the sensitive analysis method was established, and provided low limits of detection of 0.02 and 0.05 μg/L, good linearity ranges of 0.06–15 and 0.16–15 μg/L, as well as high enrichment factors of 176–1868. The method was applied to the online determination of trace polycyclic aromatic hydrocarbons in snow water and river water, and the relative recoveries corresponding to 2 and 5 μg/L were in the range of 80–116%. The repeatability of extraction and preparation of the device was investigated and the relative standard deviations (n = 3) were less than 3.6 and 5.2%.  相似文献   

9.
As signal molecules, auxins play an important role in mediating plant growth. Due to serious interfering substances in plants, it is difficult to accurately detect auxins with traditional solid‐phase extraction methods. To improve the selectivity of sample pretreatment, a novel molecularly imprinted polymer ‐coated solid‐phase microextraction fiber, which could be coupled directly to high‐performance liquid chromatography, was prepared with indole acetic acid as template molecule for the selective extraction of auxins. The factors influencing the polymer formation, such as polymerization solvent, cross‐linker, and polymerization time, were investigated in detail to enhance the performance of indole acetic acid‐molecularly imprinted polymer coating. The morphological and chemical stability of this molecularly imprinted polymer‐coated fiber was characterized by scanning electron microscopy, infrared spectrometry, and thermal analysis. The extraction capacity of the molecularly imprinted polymer‐coated solid‐phase microextraction fiber was evaluated for the selective extraction of indole acetic acid and indole‐3‐pyruvic acid followed by high‐performance liquid chromatography analysis. The linear range for indole acetic acid and indole‐3‐pyruvic acid was 1–100 µg/L and their detection limit was 0.5 µg/L. The method was applied to the simultaneous determination of two auxins in two kinds of tobacco (Nicotiana tabacum L and Nicotiana rustica L) samples, with recoveries range from 82.1 to 120.6%.  相似文献   

10.
Headspace solid‐phase microextraction is a solvent‐free sample preparation technique that is based on the equilibrium among a three‐phase system, i.e., sample‐headspace‐fiber. A compromise between sensitivity and extraction time is usually needed to optimize the sample throughput, especially when a large number of samples are analyzed, as usually the case in cross‐samples studies. This work explores the capability of multiple‐cumulative trapping solid‐phase microextraction on the characterization of the aroma profiling of olive oils, exploiting the automation capability of a novel headspace autosampler. It was shown that multiple‐cumulative solid‐phase microextraction has the potential to improve the overall sensitivity and burst the level of information for cross‐sample studies by using cumulative shorter extraction times.  相似文献   

11.
Polydopamine was coated onto cotton fibers as the adsorbent to improve the extraction efficiency. Polydopamine‐coated cotton fibers were placed into a polyetheretherketone tube for in‐tube solid‐phase microextraction. To develop an online analysis system, the extraction tube was connected with high‐performance liquid chromatography. The tube was evaluated with five estrogenic analytes, and the extraction and desorption conditions were optimized to get high extraction efficiency. Under the optimum conditions, the enrichment factors of five analytes were 143–1745. An online analysis method was established, it had large linear ranges (0.10–40 and 0.16–40 μg/L), low limits of detection (0.03, 0.05 μg/L) and satisfactory repeatability (≤3.2%). The analysis method was applied to detect targets in the real samples like as hot water in new plastic cup and tap water. The relative recoveries spiked at 1 and 5 μg/L in these samples were investigated and the results were in the range of 83.7–109%.  相似文献   

12.
A solid‐phase microextraction fiber was prepared by coating an optical fiber with a temperature‐sensitive polymer to determine phthalate esters. N‐Isopropylacrylamide and N,N′‐methylenebisacrylamide were used as the monomer and the cross linker, respectively. The fabricated fiber was characterized by FTIR spectroscopy, thermogravimetric analysis, and scanning electron microscopy. During extraction, important factors such as extraction time, pH, temperature, and ionic strength were optimized. The fabricated fiber, which is firm, inexpensive, stable, and efficient, is a vital material used in solid‐phase microextraction. Under optimum conditions, the calibration curve was linear and in the range of 1–20 μg/L (r2 = 0.9747). The high extraction efficiency was obtained for phthalates with a detection limit of 0.12 μg/L. The fabricated fiber was successfully applied to the solid‐phase micro extraction of phthalates from water samples after its extraction, followed by gas chromatography with flame ionization detection.  相似文献   

13.
We attempt to introduce animal bone waste as a coating material with an organic−inorganic structure for the fabrication of a coiled solid‐phase microextraction fiber for the first time. The coiled fiber was simply prepared with the use of copper wire and coated with bone waste suspension through the dip‐coating method. The bone waste coating was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and X‐ray diffraction analysis. It was applied as new type of solid‐phase microextraction fiber for preconcentration of polycyclic aromatic hydrocarbons before determination by high‐performance liquid chromatography with UV detection. A wide linear range 0.01–99.0 μg/L and limits of detection in the range 3.0–11.1 ng/L were obtained at optimized conditions. The bone waste coated coiled solid‐phase microextraction fiber has promise in sample preparation techniques because it is cost effective, available, stable in aqueous and organic solutions, environmentally friendly, and easy to fabricate and operate.  相似文献   

14.
Two extraction procedures, matrix solid‐phase dispersion and hollow fiber liquid‐phase microextraction, were combined and applied to determine triazine herbicides in peanut samples. The results showed that the established method has high extraction efficiency and could greatly eliminate the interferences from complex matrix samples. A series of important experimental parameters were all investigated in detail. Under the optimal conditions, the developed method has the limits of detection for triazine herbicides in the range of 0.05 to 1.71 μg/kg. Moreover, it has the recovery in the range of 80.4–120.0% with relative standard deviations of equal or lower than 8.9%. The established method may have a great potential in separation, enrichment, and purification of triazines from complex fatty solid samples.  相似文献   

15.
A novel palladium solid‐phase microextraction coating was fabricated on a stainless‐steel wire by a simple in situ oxidation–reduction process. The palladium coating exhibited a rough microscaled surface and its thickness was about 2 μm. Preparation conditions (reaction time and concentration of palladium chloride and hydrochloric acid) were optimized in detail to achieve sufficient extraction efficiency. Extraction properties of the fiber were investigated by direct immersion solid‐phase microextraction of several polycyclic aromatic hydrocarbons and phthalate esters in aqueous samples. The extracted analytes were transferred into a gas chromatography system by thermal desorption. The effect of extraction and desorption conditions on extraction efficiency were investigated. Under the optimum conditions, good linearity was obtained and correlation coefficients between 0.9908 and 0.9990 were obtained. Limits of detection were 0.05–0.10 μg/L for polycyclic aromatic hydrocarbons and 0.3 μg/L for phthalate esters. Their recoveries for real aqueous samples were in the range from 97.1 to 121% and from 89.1 to 108%, respectively. The intra‐ and interday tests were also investigated with three different addition levels, and satisfactory results were also obtained.  相似文献   

16.
A novel solid‐phase microextraction fiber was synthesized by coating a stainless steel wire with polyoxomolybdate368/polyaniline as a sorbent aimed at extraction of amitriptyline, nortriptyline, and doxepin as antidepressant drugs from urine and blood samples. The polyoxomolybdate368/polyaniline composite coating was applied using electropolymerization process under constant potential. This composition leads to enhanced extraction efficiency of the fiber. Scanning electron microscopy images show that huge three‐dimensional structures of polyoxomolybdate368 in composite induced more non‐smooth and porous fiber. In order to optimize of the extraction process, a series of variables including concentration of the composite materials, coating thickness, pH, extraction time, salt addition, and stirring rate was investigated and optimum conditions were determined. Analysis of surface morphology and chemical composition was performed. High‐performance liquid chromatography was used for separation and evaluation of mentioned antidepressant drugs from the matrixes. The experiments indicated a detection limits of <0.2 ng/L and a linear dynamic range of 0.3–100 ng/L (R> 0.994). The relative recovery values were found to be in the range of 92–98%. It was concluded that the purposed fiber is highly efficient in analyzing traces of antidepressant drugs in urine and blood.  相似文献   

17.
Resorcinol–formaldehyde aerogel coating was in situ prepared on the surface of basalt fibers. The aerogel coating is uniformly modified onto basalt fibers, and it is very porous according to the characterization by using scanning electron microscopy. An extraction tube was prepared for in‐tube solid‐phase microextraction by placing the aerogel‐coated basalt fibers into a polyetheretherketone tube. To evaluate the extraction performance toward five estrogenic compounds, the tube was connected with high performance liquid chromatography, the important extraction and desorption conditions were investigated. An online analytical method for detection of estrogens was developed and presented low limits of detection (0.005–0.030 µg/L), wide linear ranges (0.017–20, 0.033–20, and 0.099–20 µg/L), good linearity (r > 0.9990), and satisfactory repeatability (relative standard deviation < 2.7%). The method was successfully applied to detect trace estrogens in real water samples (bottled pure water and bottled mineral water), satisfactory recoveries were ranged from 80 to 125% with two spiking levels of 2 and 6 µg/L.  相似文献   

18.
Ionic liquids have been widely used in different fields by advantage of their specific properties. In this work, 1‐methyl‐3‐(3‐trimethoxysilyl propyl)imidazolium chloride was prepared and chemically bonded onto basalt fibers for in‐tube solid‐phase microextraction. Through combining in‐tube extraction device with high‐performance liquid chromatography equipped with a diode array detector, an online enrichment and analysis method for eight polycyclic aromatic hydrocarbons was established under the optimum conditions. A good enrichment factor (52–814), good linearity (0.10–15 and 0.20–15 μg/L), low limits of detection (0.03–0.05 μg/L), and low limits of quantitation (0.10–0.20 μg/L) were achieved using a sample volume of 50 mL. Analysis method was applied to the real samples including the groundwater and wastewater from a chemical industry park, some target analytes were detected and the relative recoveries were in the range of 80.4–116.8%.  相似文献   

19.
In‐syringe solid‐phase extraction is a promising sample pretreatment method for the on‐site sampling of water samples because of its outstanding advantages of portability, simple operation, short extraction time, and low cost. In this work, a novel in‐syringe solid‐phase extraction device using metal–organic frameworks as the adsorbent was fabricated for the on‐site sampling of polycyclic aromatic hydrocarbons from environmental waters. Trace polycyclic aromatic hydrocarbons were effectively extracted through the self‐made device followed by gas chromatography with mass spectrometry analysis. Owing to the excellent adsorption performance of metal–organic frameworks, the analytes could be completely adsorbed during one adsorption cycle, thus effectively shortening the extraction time. Moreover, the adsorbed analytes could remain stable on the device for at least 7 days, revealing the potential of the self‐made device for on‐site sampling of degradable compounds in remote regions. The limit of detection ranged from 0.20 to 1.9 ng/L under the optimum conditions. Satisfactory recoveries varying from 84.4 to 104.5% and relative standard deviations below 9.7% were obtained in real samples analysis. The results of this study promote the application of metal–organic frameworks in sample preparation and demonstrate the great potential of in‐syringe solid‐phase extraction for the on‐site sampling of trace contaminants in environmental waters.  相似文献   

20.
To improve the durability and extraction efficiency of an ionic liquid coating, 1‐dodecyl‐3‐vinylimidazolium bromide was polymerized and grafted onto basalt fibers for in‐tube solid‐phase microextraction. To develop an extraction tube, basalt fibers grafted with the poly(ionic liquids) coating were filled into a polyether ether ketone tube with a 0.75 mm inner diameter. The extraction tube was connected to high‐performance liquid chromatography system equipped with a sampling pump to build an online enrichment and analysis system. Using four common phthalates as model analytes, the extraction tube was investigated by the online analysis system. Good enrichment performance was exhibited by high enrichment factors ranging from 851 to 1858. Under the optimum conditions, an online analysis method was established, and good linearity (0.03–12 and 0.15–12 μg/L) and low limits of detection (0.01–0.05 μg/L) were achieved. This analysis method was applied to real samples including water in a disposable plastic box and the bottled water, some targets were detected but not quantified, and the relative recoveries spiked at 2, 5 and 10 μg/L were in the range of 86.4–119.5%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号