首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This perspective gives our views on general aspects and future directions of gas‐phase atmospheric chemical kinetic mechanism development, emphasizing on the work needed for the sustainable development of chemically detailed mechanisms that reflect current kinetic, mechanistic, and theoretical knowledge. Current and future mechanism development efforts and research needs are discussed, including software‐aided autogeneration and maintenance of kinetic models as a future‐proof approach for atmospheric model development. There is an overarching need for the evaluation and extension of structure‐activity relationships (SARs) that predict the properties and reactions of the many multifunctionalized compounds in the atmosphere that are at the core of detailed mechanisms, but for which no direct chemical data are available. Here, we discuss the experimental and theoretical data needed to support the development of mechanisms and SARs, the types of SARs relevant to atmospheric chemistry, the current status and limitations of SARs for various types of atmospheric reactions, the status of thermochemical estimates needed for mechanism development, and our outlook for the future. The authors have recently formed a SAR evaluation working group to address these issues.  相似文献   

2.
The velocity imaging technique combined with (2+1) resonance‐enhanced multiphoton ionization (REMPI) is used to detect the halogen fragments in the photodissociation of bromobenzene and iodobenzene at 266 nm. With the aid of potential energy curve calculations by Lunell (Y. J. Liu, P. Persson, S. Lunell, J. Phys. Chem. A 2004 , 108, 2339–2345.), the Br fragmentation is proposed to stem from excitation of the lowest excited singlet state followed by predissociation along a repulsive triplet state. The slowed dissociation rate leads to production of the isotropic Br fragments and 93 % internal energy deposition. Only the ground state Br(2P3/2) is detectable. In contrast, when iodine is substituted, the iodine effect stabilizes the repulsive states associated with the I? C6H5 bond rupture and the subsequent dissociation channels become more complicated. 84 % of the iodobenzene molecules obtained follow a direct dissociation channel, while the remaining undergo a predissociative process. Both routes result in rapid dissociation with anisotropy parameters of 0.7±0.2 and 0.9±0.2 as well as 70 % and 26 % in the fractions of translational energy deposition, respectively. The relative quantum yields of I* and I are 0.35 and 0.65 and their related photodissociation pathways are discussed in detail.  相似文献   

3.
Hydrated ion nanocalorimetry is used to measure reduction energies and H atom affinities of gaseous hydrated ions by determining the energy deposited into these nanodrops from the number of water molecules lost upon reduction by thermally generated electrons (see figure).

  相似文献   


4.
Several density functional theory (DFT) methods, such as CAM‐B3LYP, M06, ωB97x, and ωB97xD, are used to characterize a range of ene reactions. The Gibbs free energy, activation enthalpy, and entropy are calculated with both the gas‐ and solution‐phase translational entropy; the results obtained from the solution‐phase translational entropies are quite close to the experimental measurements, whereas the gas‐phase translational entropies do not perform well. For ene reactions between the enophile propanedioic acid (2‐oxo‐1,3‐dimethyl ester) and π donors, the two‐solvent‐involved explicit+implicit model can be employed to obtain accurate activation entropies and free‐energy barriers, because the interaction between the carbonyl oxygen atom and the solvent in the transition state is strengthened with the formation of C?C and O?H bonds. In contrast, an implicit solvent model is adequate to calculate activation entropies and free‐energy barriers for the corresponding reactions of the enophile 4‐phenyl‐1,2,4‐triazoline‐3,5‐dione.  相似文献   

5.
The synthesis and directed evolution of a tetranuclear copper cluster, supported by 8‐mercapto‐N9‐propyladenine ligand, to a highly porous three‐dimensional cubic framework in the solid state is reported. The structure of this porous framework was unambiguously characterized by X‐ray crystallography. The framework contains about 62 % solvent‐accessible void; the presence of a free exocyclic amino group in the porous framework facilitates reversible adsorption of gas and solvent molecules. Oriented growth of framework in solution was also tracked by force and scanning electron microscopy studies, leading to identification of an intriguing ripening process, over a period of 30 days, which also revealed formation of cuboidal aggregates in solution. The elemental composition of these cuboidal aggregates was ascertained by EDAX analysis.  相似文献   

6.
A new ionic, water‐soluble scavenger for acyl chlorides, 1‐(2‐aminoethyl)pyridinium bromide ( 1 ), has been investigated. Compound 1 was used for the rapid and simple purification of a series of benzamides and sulfonamides (Table) obtained by solution‐phase synthesis from the corresponding amines (Scheme). The inexpensive scavenger, which can be prepared on large scale, was shown to readily ‘eliminate’ excess acyl chlorides (reagent) by simple aqueous extraction. The amides purified in this way were obtained in excellent yields and purities (Table), which makes 1 a versatile new reagent, especially for the combinatorial solution‐phase synthesis of amide libraries.  相似文献   

7.
《化学:亚洲杂志》2017,12(16):2008-2028
T he use of nonfluorescent azo dyes as dark quenchers in activatable optical bioprobes based on the Förster resonance energy transfer (FRET) mechanism and designed to target a wide range of enzymes has been established for over two decades. The key value of the azo moiety (−N=N−) to act as an efficient “ON–OFF” switch of fluorescence once introduced within the core structure of conventional organic‐based fluorophores (mainly fluorescent aniline derivatives) has recently been exploited in the development of alternative reaction‐based small‐molecule probes based on the “profluorescence” concept. These unprecedented “azobenzene‐caged” fluorophores are valuable tools for the detection of a wide range of reactive (bio)analytes. This review highlights the most recent and relevant advances made in the design and biosensing/bioimaging applications of azo‐based fluorogenic probes. Emphasis is also placed on relevant achievements in the synthesis of bioconjugatable/biocompatible azo dyes used as starting building blocks in the rational and rapid construction of these fluorescent chemodosimeters. Finally, a brief glimpse of possible future biomedical applications (theranostics) of these “smart” azobenzene‐based molecular systems is presented.  相似文献   

8.
The application of cyclodextrin (CD)‐based host–guest interactions towards the fabrication of functional supramolecular assemblies and hydrogels is of particular interest in the field of biomedicine. However, as of late they have found new applications as advanced functional materials (e.g., actuators and self‐healing materials), which have renewed interest across a wide range of fields. Advanced supramolecular materials synthesized using this noncovalent interaction, exhibit specificity and reversibility, which can be used to impart reversible cross‐linking, specific binding sites, and functionality. In this review, various functional CD‐based supramolecular assemblies and hydrogels will be outlined with the focus on recent advances. In addition, an outlook will be provided on the direction of this rapidly developing field.

  相似文献   


9.
Transition‐metal clusters have long been proposed as model systems to study heterogeneous catalysts. In this Concept article we show how advanced spectroscopic techniques can be used to determine the structures of gas‐phase transition‐metal clusters and their complexes with small molecules. Combined with computational studies, this can help to develop an understanding of the reactivity of these catalytic models.  相似文献   

10.
The polyolefin industry is dominated by gas‐phase and slurry‐phase polymerization using heterogeneous catalysts. In contrast, academic research is focused on homogeneous systems, especially for late‐transition‐metal catalysts. The heterogenization of homogeneous catalysts is a general strategy to provide catalyst solutions for existing industrial polyolefin synthesis. Herein, we report an alternative, potentially general strategy for using homogeneous late‐transition‐metal catalysts in gas‐phase and slurry‐phase polymerization. In this self‐supporting strategy, catalysts with moderate chain‐walking capabilities produced porous polymer supports during gas‐phase ethylene polymerization. Chain walking, in which the metal center can move up and down the polymer chain during polymerization, ensures that the metal center can travel along the polymer chain to find suitable sites for ethylene enchainment. This strategy enables simple heterogenization of catalysts on solid supports for slurry‐phase polymerization. Most importantly, various branched ultra‐high‐molecular‐weight polyethylenes can be prepared under various polymerization conditions with proper catalyst selection.  相似文献   

11.
Supercapacitors may be able to store more energy while maintaining fast charging times; however, they need low-cost and sophisticated electrode materials. Developing innovative and effective carbon-based electrode materials from naturally occurring chemical components is thus critical for supercapacitor development. In this context, biopolymer-derived porous carbon electrode materials for energy storage applications have gained considerable momentum due to their wide accessibility, high porosity, cost-effectiveness, low weight, biodegradability, and environmental friendliness. Moreover, the carbon structures derived from biopolymeric materials possess unique compositional, morphological, and electrochemical properties. This review aims to emphasize (i) the comprehensive concepts of biopolymers and supercapacitors to approach smart carbon-based materials for supercapacitors, (ii) synthesis strategies for biopolymer derived nanostructured carbons, (iii) recent advancements in biopolymer derived nanostructured carbons for supercapacitors, and (iv) challenges and future prospects from the viewpoint of green chemistry-based energy storage. This study is likely to be useful to the scientific community interested in the design of low-cost, efficient, and green electrode materials for supercapacitors as well as various types of electrocatalysis for energy production.  相似文献   

12.
One of the fundamental processes in nature, the oxidation of water, is catalyzed by a small CaMn3O4?MnO cluster located in photosystem II (PS II). Now, the first successful preparation of a series of isolated ligand‐free tetrameric CanMn4?nO4+ (n=0–4) cluster ions is reported, which are employed as structural models for the catalytically active site of PS II. Gas‐phase reactivity experiments with D2O and H218O in an ion trap reveal the facile deprotonation of multiple water molecules via hydroxylation of the cluster oxo bridges for all investigated clusters. However, only the mono‐calcium cluster CaMn3O4+ is observed to oxidize water via elimination of hydrogen peroxide. First‐principles density functional theory (DFT) calculations elucidate mechanistic details of the deprotonation and oxidation reactions mediated by CaMn3O4+ as well as the role of calcium.  相似文献   

13.
Solutions of butylzinc iodide in tetrahydrofuran, acetonitrile, and N,N‐dimethylformamide were analyzed by electrospray ionization mass spectrometry. In all cases, microsolvated butylzinc cations [ZnBu(solvent)n]+, n=1–3, were detected. The parallel observation of the butylzincate anion [ZnBuI2]? suggests that these ions result from disproportionation of neutral butylzinc iodide in solution. In the presence of simple bidentate ligands (1,2‐dimethoxyethane, N,N‐dimethyl‐2‐methoxyethylamine, and N,N,N′,N′‐tetramethylethylenediamine), chelate complexes of the type [ZnBu(ligand)]+ form quite readily. The relative stabilities of these complexes were probed by competition experiments and analysis of their unimolecular gas‐phase reactivity. Fragmentation of mass‐selected [ZnBu(ligand)]+ leads to the elimination of butene and formation of [ZnH(ligand)]+. In marked contrast, the microsolvated cations [ZnBu(solvent)n]+ lose the attached solvent molecules upon gas‐phase fragmentation to produce bare [ZnBu]+, which subsequently dissociates into [C4H9]+ and Zn. This difference in reactivity resembles the situation in organozinc solution chemistry, in which chelating ligands are needed to activate dialkylzinc compounds for the nucleophilic addition to aldehydes.  相似文献   

14.
For over two decades bulk‐heterojunction polymer solar cell (BHJ‐PSC) research was dominated by donor:acceptor BHJ blends based on polymer donors and fullerene molecular acceptors. This situation has changed recently, with non‐fullerene PSCs developing very rapidly. The power conversion efficiencies of non‐fullerene PSCs have now reached over 15 %, which is far above the most efficient fullerene‐based PSCs. Among the various non‐fullerene PSCs, all‐polymer solar cells (APSCs) based on polymer donor‐polymer acceptor BHJs have attracted growing attention, due to the following attractions: 1) large and tunable light absorption of the polymer donor/polymer acceptor pair; 2) robustness of the BHJ film morphology; 3) compatibility with large scale/large area manufacturing; 4) long‐term stability of the cell to external environmental and mechanical stresses. This Minireview highlights the opportunities offered by APSCs, selected polymer families suitable for these devices with optimization to enhance the performance further, and discusses the challenges facing APSC development for commercial applications.  相似文献   

15.
Kumada catalyst‐transfer polycondensation (KCTP) is a new but rapidly developing method with great potential for the preparation of well‐defined conjugated polymers (CPs). The recently discovered chain‐growth mechanism is unique among the various transition metal‐catalyzed polycondensations, and has thus attracted much attention among researchers. Most progress is found in the areas of mechanism and external initiation via new initiators, but also the number of monomers other than thiophene that can be polymerized is steadily increasing. Accordingly, the variety of CP chain architectures is increasing as well, and a considerable contribution of KCTP toward more efficient materials can be expected in the future. This review critically focuses on very recent progress in the synthesis of CPs and the mechanism of KCTP, and is finally aimed at providing a comprehensive picture of this exciting polymerization method.

  相似文献   


16.
17.
18.
Gas‐phase ruthenium clusters Run+ (n=2–6) are employed as model systems to discover the origin of the outstanding performance of supported sub‐nanometer ruthenium particles in the catalytic CO methanation reaction with relevance to the hydrogen feed‐gas purification for advanced fuel‐cell applications. Using ion‐trap mass spectrometry in conjunction with first‐principles density functional theory calculations three fundamental properties of these clusters are identified which determine the selectivity and catalytic activity: high reactivity toward CO in contrast to inertness in the reaction with CO2; promotion of cooperatively enhanced H2 coadsorption and dissociation on pre‐formed ruthenium carbonyl clusters, that is, no CO poisoning occurs; and the presence of Ru‐atom sites with a low number of metal–metal bonds, which are particularly active for H2 coadsorption and activation. Furthermore, comprehensive theoretical investigations provide mechanistic insight into the CO methanation reaction and discover a reaction route involving the formation of a formyl‐type intermediate.  相似文献   

19.
20.
Increasing demand for sodium‐ion batteries (SIBs), one of the most feasible alternatives to lithium ion batteries (LIBs), has resulted because of their high energy density, low cost, and excellent cycling stability. Consequently, the design and fabrication of suitable electrode materials that govern the overall performance of SIBs are important. Aerosol‐assisted spray processes have gained recent prominence as feasible, scalable, and cost‐effective methods for preparing electrode materials. Herein, recent advances in aerosol‐assisted spray processes for the fabrication of nanostructured metal chalcogenides (e.g., metal sulfides, selenides, and tellurides) for SIBs, with a focus on improving the electrochemical performance of metal chalcogenides, are summarized. Finally, the improvements, limitations, and direction of future research into aerosol‐assisted spray processes for the fabrication of various electrode materials are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号