首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Determination of target analytes present in complex matrices requires a suitable sample preparation approach to efficiently remove the analytes of interest from a medium containing several interferers while at the same time preconcentrating them aiming to improve the output signal detection. Online multidimensional solid‐phase separation techniques have been widely used for the analysis of different contaminants in complex matrices such as food, environmental, and biological samples, among others. These online techniques usually consist of two steps performed in two different columns (extraction and analytical column), the first being employed to extract the analytes of interest from the original medium and the latter to separate them from the interferers. The extraction column in multidimensional techniques presents a relevant role since their variations as building material (usually a tube), sorbent material, modes of application, and so on can significantly influence the extraction success. The main features of such columns are subject of constant research aiming improvements directly related to the performance of the separation techniques that utilize multidimensional analysis. The present review highlights the main features of extraction columns online coupled to chromatographic techniques, inclusive for in‐tube solid‐phase microextraction, online solid phase and turbulent flow, aiming the determination of analytes present at very low concentrations in complex matrices. It will critically describe and discuss some of the most common instrumental set up as well as comments on recent applications of these multidimensional techniques. Besides that, the authors have described some properties and enhancements of the extraction columns that are used as first dimension on these systems, such as type of column material (poly (ether ether ketone), fused silica, stainless steel, and other materials) and the way that the extractive phase is accommodated inside the tubing (filled and open tubular). Practical applications of this approach in fields such as environment, food, and bioanalysis are also presented and discussed.  相似文献   

2.
Public concern about pesticides in food and water has increased dramatically in the last two decades. In order to guarantee consumers’ health and safety, analytical methods that could provide fast and reliable answers without compromising accuracy and precision are required. Sample treatment is probably the most tedious and time‐consuming step in many analytical procedures and, despite the significant advances in chromatographic separations and mass spectrometry techniques, sample treatment is still one of the most important parts of the analytical process for achieving good analytical results. Therefore, over the last years, considerable efforts have been made to simplify the stage and to develop fast, accurate, and robust methods that allow the determination of a wide range of pesticides without compromising the integrity of the extraction process. This review article intends to give a short overview of recently developed on‐line solid‐phase extraction, preconcentration, and clean‐up procedures for the determination of pesticides in complex matrices by liquid chromatography–mass spectrometry techniques.  相似文献   

3.
Gas chromatography coupled to high‐resolution mass spectrometry is a powerful analytical method that combines excellent separation power of gas chromatography with improved identification based on an accurate mass measurement. These features designate gas chromatography with high‐resolution mass spectrometry as the first choice for identification and structure elucidation of unknown volatile and semi‐volatile organic compounds. Gas chromatography with high‐resolution mass spectrometry quantitative analyses was previously focused on the determination of dioxins and related compounds using magnetic sector type analyzers, a standing requirement of many international standards. The introduction of a quadrupole high‐resolution time‐of‐flight mass analyzer broadened interest in this method and novel applications were developed, especially for multi‐target screening purposes. This review is focused on the development and the most interesting applications of gas chromatography coupled to high‐resolution mass spectrometry towards analysis of environmental matrices, biological fluids, and food safety since 2010. The main attention is paid to various approaches and applications of gas chromatography coupled to high‐resolution mass spectrometry for non‐target screening to identify contaminants and to characterize the chemical composition of environmental, food, and biological samples. The most interesting quantitative applications, where a significant contribution of gas chromatography with high‐resolution mass spectrometry over the currently used methods is expected, will be discussed as well.  相似文献   

4.
We report the fabrication of an anion‐exchange monolithic column in a stainless‐steel chromatographic column (10 mm × 2.1 mm i.d.) using [2‐(acryloyloxy) ethyl]trimethylammonium chloride as the monomer and ethylene dimethacrylate as the crosslinker. The prepared monolith was developed as the adsorbent for the on‐line solid‐phase extraction of salicylic acid in various animal‐origin foodstuffs combined with liquid chromatography and tandem mass spectrometry. The monolith was characterized by using Fourier transform infrared spectroscopy, scanning electron microscopy, nitrogen adsorption analysis, and elemental analysis. Potential factors affecting the on‐line solid‐phase extraction and liquid chromatography with tandem mass spectrometry analysis were studied in detail. Under the optimized conditions, the total analysis time including cleanup and liquid chromatography with tandem mass spectrometry separation was 17 min. The developed method gave the linear range of 15–750 μg/kg, detection limits (S/N = 3) of 5 μg/kg, and quantification limits (S/N = 10) of 15 μg/kg. The recoveries obtained by spiking 10, 20, and 100 μg/kg of salicylic acid in the animal‐origin food samples were in the range of 85.2–98.4%. In addition, the monolith was stable enough for 550 extraction cycles with the precision of peak area ≤11.6%.  相似文献   

5.
Eucommiae Cortex is a classical traditional Chinese medicine, which needs to be processed by “sweating” methods. To select the suitable processing method and “sweating” processing condition for Eucommiae Cortex, in this study, the quality of Eucommiae Cortex was evaluated based on simultaneous determination of multiple bioactive constituents combined with gray relational analysis. The contents of lignans, iridoids, penylpropanoids, flavonoids, and phenols in samples were simultaneously determined using ultra‐fast performance liquid chromatography coupled with triple quadrupole‐linear ion trap tandem mass spectrometry. The chromatographic separation was performed on a Synergiۛ Hydro‐RP 100 Å column (100 mm × 2.0 mm, 2.5 μm) at 30°C with a gradient elution of acetonitrile with 0.1% formic acid/0.1% aqueous formic acid as the mobile phase. Furthermore, gray relational analysis was performed to evaluate and sort the samples according to the contents of 14 constituents by calculating the relative correlation degree of each sample. The results demonstrated that the quality of Eucommiae Cortex “sweating” at source area was better and the better “sweating” condition was to scrape off the cork layer before “sweating” with straw covering and sun drying. The developed method could provide the foundation and support for “sweating” processing method of Eucommiae Cortex in normalization and standardization.  相似文献   

6.
The development of new and mild protocols for the specific enrichment of biomolecules is of significant interest from the perspective of chemical biology. A cobalt–phosphine complex immobilised on a solid‐phase resin has been found to selectively bind to a propargyl carbamate tag, that is, “catch”, under dilute aqueous conditions (pH 7) at 4 °C. Upon acidic treatment of the resulting resin‐bound alkyne–cobalt complex, the Nicholas reaction was induced to “release” the alkyne‐tagged molecule from the resin as a free amine. Model studies revealed that selective enrichment of the alkyne‐tagged molecule could be achieved with high efficiency at 4 °C. The proof‐of‐concept was applied to an alkyne‐tagged amino acid and dipeptide. Studies using an alkyne‐tagged dipeptide proved that this protocol is compatible with various amino acids bearing a range of functionalities in the side‐chain. In addition, selective enrichment and detection of an amine derived from the “catch and release” of an alkyne‐tagged dipeptide in the presence of various peptides has been accomplished under highly dilute conditions, as determined by mass spectrometry.  相似文献   

7.
Complex synthetic polymer systems as for example copolymers exhibit distributions in at least two of the three basic molecular characteristics which are molar mass, chemical structure/composition and molecular architecture. Size exclusion chromatography (SEC) separates macromolecules according to their size in solution which simultaneously depends on all molecular characteristics. Therefore, multi‐dimensional liquid chromatographic techniques are to be applied to independently assess all different distributions present in the sample. So far, two‐dimensional separations have been attempted. In the first dimension separation column, selected liquid chromatographic mechanisms are intentionally combined to suppress effects of all but one molecular characteristic. Consequently, polymer species are separated exclusively or at least predominantly according to one single parameter. In the second dimension separation column, macromolecules are separated according to another molecular characteristic. In this contribution the methods are briefly reviewed in which effect of polymer molar mass on polymer retention is suppressed. The resulting ”one parameter separation systems” can be on‐line or off‐line connected to another separation system such as SEC to provide more detailed characterization of complex polymers. Besides, selected procedures for the re‐concentration of diluted polymer solutions are concisely treated. These may be utilized for increasing the concentration of sample(s) leaving the first dimension separation column. Eventually, some arrangements for controlled sample re‐introduction into the second dimension separation column are outlined.  相似文献   

8.
Sample preparation, such as extraction, concentration, and isolation of analytes, greatly influences their reliable and accurate analysis. In-tube solid-phase microextraction (SPME) is a new effective sample preparation technique using an open tubular fused-silica capillary column as an extraction device. Organic compounds in aqueous samples are directly extracted and concentrated into the stationary phase of capillary columns by repeated draw/eject cycles of sample solution, and they can be directly transferred to the liquid chromatographic column. In-tube SPME is an ideal sample preparation technique because it is fast to operate, easy to automate, solvent-free, and inexpensive. On-line in-tube SPME-performed continuous extraction, concentration, desorption, and injection using an autosampler, is usually used in combination with high performance liquid chromatography and liquid chromatography-mass spectrometry. This technique has successfully been applied to the determination of various compounds such as pesticides, drugs, environmental pollutants, and food contaminants. In this review, an overview of the development of in-tube SPME technique and its applications to environmental, clinical, forensic, and food analyses are described.  相似文献   

9.
“Dogel ebs” was known as Sophora flavescens Ait., a classical traditional Chinese Mongolian herbal medicine, which had the effects on damp‐heat dysentery, scrofula, and syndrome of accumulated dampness toxicity. Although the chemical constituents have been clarified by our previous studies, the metabolic transformation of “Dogel ebs” in vivo was still unclear. To explore the mechanism of “Dogel ebs,” the metabolites in plasma, bile, and urine samples were investigated. A fast positive and negative ion switching technology was used for the simultaneous determination of flavonoids and alkaloids in “Dogel ebs” in a single run. And a target‐group‐change coupled with mass defect filtering strategy was utilized to analyze the collected data. 89 parent compounds and 82 metabolites were characterized by high‐performance liquid chromatography with quadrupole exactive Orbitrap mass spectrometry. Both phase I and phase II metabolites were observed and the metabolic pathways involved in oxidation, demethylation, acetylation, and glucuronidation. 69 metabolites of “Dogel ebs,” including three hydroxyls bonding xanthohumol, formononetin‐7‐O‐glucuronide, 2′‐hydroxyl‐isoxanthohumol decarboxylation metabolite, oxysophocarpine dehydrogen, 9α‐hydroxysophoramine‐O‐glucuronide, etc. were reported for the first time.  相似文献   

10.
《Electrophoresis》2017,38(24):3059-3078
In the field of analytical chemistry, sample preparation and chromatographic separation are two core procedures. The means by which to improve the sensitivity, selectivity and detection limit of a method have become a topic of great interest. Recently, porous organic frameworks, such as metal‐organic frameworks (MOFs) and covalent organic frameworks (COFs), have been widely used in this research area because of their special features, and different methods have been developed. This review summarizes the applications of MOFs and COFs in sample preparation and chromatographic stationary phases. The MOF‐ or COF‐based solid‐phase extraction (SPE), solid‐phase microextraction (SPME), gas chromatography (GC), high‐performance liquid chromatography (HPLC) and capillary electrochromatography (CEC) methods are described. The excellent properties of MOFs and COFs have resulted in intense interest in exploring their performance and mechanisms for sample preparation and chromatographic separation.  相似文献   

11.
We developed a new method, based on alkaline diatomite solid‐phase extraction followed by gas chromatography with mass spectrometry, for the simultaneous determination of the toxic contaminants ethyl carbamate (EC) and 4‐(5‐)methylimidazole (4‐MEI) in yellow rice wine and soy sauce. The optimal extraction conditions were defined. With the application of alkaline diatomite solid‐phase extraction, damage to the capillary column by organic acids was greatly reduced. With deuterated EC used as the internal standard, the linearity of the calibration curves for EC and 4‐MEI was good with correlation coefficient above 0.99. In a spiked experiment with EC and 4‐MEI in yellow rice wine and soy sauce, recovery of the added EC was 80.5–102.5% and that of 4‐MEI was 78.3–92.8%. The limit of quantification and limit of detection for EC were 6.0 and 2.0 μg/kg, respectively, and for 4‐MEI were 15.0 and 5.0 μg/kg, respectively. The validation results demonstrate that the method is fast, simple, and selective, and therefore is suitable for simultaneously determining the presence of EC and 4‐MEI in fermented food.  相似文献   

12.
An orthogonal (71.9%) off‐line preparative two‐dimensional normal‐phase liquid chromatography/reversed‐phase liquid chromatography method coupled with effective sample pretreatment was developed for separation and purification of flavonoids from licorice. Most of the nonflavonoids were firstly removed using a self‐made Click TE‐Cys (60 μm) solid‐phase extraction. In the first dimension, an industrial grade preparative chromatography was employed to purify the crude flavonoids. Click TE‐Cys (10 μm) was selected as the stationary phase that provided an excellent separation with high reproducibility. Ethyl acetate/ethanol was selected as the mobile phase owing to their excellent solubility for flavonoids. Flavonoids co‐eluted in the first dimension were selected for further purification using reversed‐phase liquid chromatography. Multiple compounds could be isolated from one normal‐phase fraction and some compounds with bad resolution in one‐dimensional liquid chromatography could be prepared in this two‐dimensional system owing to the orthogonal separation. Moreover, this two‐dimensional liquid chromatography method was beneficial for the preparation of relatively trace flavonoid compounds, which were enriched in the first dimension and further purified in the second dimension. Totally, 24 flavonoid compounds with high purity were obtained. The results demonstrated that the off‐line two‐dimensional liquid chromatography method was effective for the preparative separation and purification of flavonoids from licorice.  相似文献   

13.
Analysis of N‐glycans released enzymatically from patients’ sera or other clinical samples may provide diagnostically and prognostically important information on human disease. Permethylation of these biomolecules simultaneously increases their hydrophobicity and substantially improves their detection parameters in the following mass spectrometric analyses. The overall procedure, from the glycan cleavage to the final mass spectrometric determinations, includes several steps involving extraction, derivatization, and purification. During these steps, certain polymeric contaminants that may have been coincidentally introduced could hamper the final measurements. To understand and counter these interferences and further fractionate or preconcentrate these glycans, we introduce here an effective microgradient chromatographic technique that employs a small reversed‐phase microcolumn connected to a gas‐tight microsyringe delivering a mobile‐phase gradient. After loading the glycan fraction onto the microcolumn, three elution steps are recommended: (1) remove polar contaminants; (2) recover permethylated glycans for either liquid chromatography with electrospray ionization mass spectrometry or matrix‐assisted laser desorption/ionization mass spectrometry; and (3) remove larger polymeric contaminants and regenerate the precolumn. We further demonstrate that the trapped second fraction can be beneficially preconcentrated and further separated to achieve matrix‐assisted laser desorption/ionization mass spectrometric detection of the derivatized N‐glycans up to 6300 Da. The enhanced detection capabilities for tetra‐antennary N‐glycans are of increasing interest in disease biomarker discovery.  相似文献   

14.
Recently, there has been considerable interest in the use of miniaturized sample preparation techniques before the chromatographic monitoring of the analytes in unknown complex compositions. The use of biopolymer‐based sorbents in solid‐phase microextraction techniques has achieved a good reputation. A great variety of polysaccharides can be extracted from marine plants or microorganisms. Seaweeds are the major sources of polysaccharides such as alginate, agar, agarose, as well as carrageenans. Agarose and alginate (green biopolymers) have been manipulated for different microextraction approaches. The present review is focused on the classification of biopolymer and their applications in multidisciplinary research. Besides, efforts have been made to discuss the state‐of‐the‐art of the new microextraction techniques that utilize commercial biopolymer interfaces such as agarose in liquid‐phase microextraction and solid‐phase microextraction.  相似文献   

15.
In the present work we describe a two‐dimensional liquid chromatographic system (2D‐LC) with detection by mass spectrometry (MS) for the simultaneous separation of endogenous metabolites of clinical interest and excreted xenobiotics deriving from exposure to toxic compounds. The 2D‐LC system involves two orthogonal chromatographic modes, hydrophilic interaction liquid chromatography (HILIC) to separate polar endogenous metabolites and reversed‐phase (RP) chromatography to separate excreted xenobiotics of low and intermediate polarity. Additionally, the present proposal has the novelty of incorporating an on‐line sample treatment based on the use of restricted access materials (RAMs), which permits the direct injection of urine samples into the system. The work is focused on the instrumental coupling, studying all possible options and attempting to circumvent the problems of solvent incompatibility between the RAM device and the two chromatographic columns, HILIC and RP. The instrumental configuration developed, RAM‐HILIC‐RPLC‐MS/MS, allows the simultaneous assessment of urinary metabolites of clinical interest and excreted compounds derived from exposure to toxic agents with minimal sample manipulation. Thus, it may be of interest in areas such as occupational and environmental toxicology in order to explore the possible relationship between the two types of compounds. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Issue no. 16 is a regular issue with “Emphasis on Sensitivity Enhancement and Detection” consisting of 18 contributions distributed over 5 distinct parts and a Fast Track paper. The Fast Track paper is on “Barcoding of Giardia duodenalis isolates and derived lines from an established cryobank by a mutation scanning‐based approach”. The remaining 18 papers are grouped into 5 different parts. Part I and Part II represent the emphasis of this issue which involves “Sample Extraction and Enrichment and Sensitivity Enhancement” and “Detection Approaches” based on coupling CE with EC, ECL and MS. Part I has a series of 6 research papers on multifunctional magnetic nanoparticles for the enrichment of proteins, magnetic microspheres solid phase extraction of eight illegal drugs in human urine, hollow‐fiber liquid phase microextraction of nonsteroidal anti‐inflammatory drugs in wastewater, solid phase extraction to enhance sensitivity of CE for the determination of pharmaceuticals in river water, in‐line preconcentration CZE for the analysis of haloacetic acids in water, and dispersive liquid‐liquid microextraction coupled with CE for the determination of sulfonamides. Part II has 5 papers concerned with CE coupled with EC and ECL detection for the analysis of beta‐blockers, determination of nicotine and its metabolite cotinine in urine and cigarette samples by CE coupled with ECL, CE‐ECL detection for the analysis of ibandronate in drug formulation and human urine, CE‐ESI‐MS method for carbohydrate analysis, and analysis of phospholipids using MIP‐OTC in CEC‐ESI‐MS. Part III has 3 contributions on binding interaction and affinity capillary electrophoresis involving mobility shift assay for binding of DNA with NFAT3, rapid CE‐UV binding tests of environmentally hazardous compounds with polymer‐modified magnetic nanoparticles, and quantitative evaluation of lectin‐reactive glycoforms of alpha1‐acid glycoprotein using affinity CE with fluorescence detection. Part IV is on protein analysis by gel electrophoresis and has 2 contributions while Part V has 2 research papers on rice genotyping and determination of contrast agents by MEKC in urine and serum samples. Featured articles include: FAST TRACK: Barcoding of Giardia duodenalis isolates and derived lines from an established cryobank by a mutation scanning‐based approach. (( 10.1002/elps.201100283 )) Applications of multifunctional magnetic nanoparticles for the enrichment of proteins for PAGE separation. (( 10.1002/elps.201000657 )) Dispersive liquid‐liquid microextraction coupled with capillary electrophoresis for simultaneous determination of sulfonamides with the aid of experimental design. (( 10.1002/elps.201100142 )) Carbohydrate analysis by capillary electrophoresis‐microelectrospray ionization‐mass spectrometry. (( 10.1002/elps.201100027 )) Quantitative evaluation of lectin‐reactive glycoforms of α1‐acid glycoprotein using lectin affinity capillary electrophoresis with fluorescence detection. (( 10.1002/elps.201100146 )) High throughput functional marker assay for detection of Xa/xa and fgr genes in rice (Oryza sativa L.). (( 10.1002/elps.201100196 ))  相似文献   

17.
Halogenated organic contaminants, including legislated and potential persistent organic pollutants and their precursors, represent a major environmental concern due to their hazardous effects in humans and wildlife as well as their ability to bioaccumulate through the food chain, their high resistance to environmental degradation, and their long-range atmospheric transport potential. The monitoring of these compounds in the environment at ultra-trace concentration levels requires highly selective and sensitive analytical methodologies. The lack of reference step-by-step methods led to a high number of reliable determinations depending on analytes, the complexity of the sample, and available instrumentation. Thus, this review article is mainly focused on the last advances in the analytical methodologies for the determination of halogenated organic contaminants. Methodologies regarding sample treatment, chromatographic separation, and mass spectrometry analysis have been reviewed to finally highlight the future perspectives for the improvement of the analytical determinations of these compounds and the throughput of environmental control laboratories in this field.  相似文献   

18.
In this review, recent developments for the determination of emerging organic contaminants (EOCs) in plant tissues are discussed focusing on the homogenization, extraction and determination steps involved. Eleven classes of EOCs, namely antibiotics, analgesics, antiepileptics, antidepressants, antiseptics, plasticizers, fragrances, surfactants, flame retardants, and phenoxy acid herbicides, have been evaluated. Methods are critically reviewed in terms of all the analytical steps involved in the analysis, sampling and sample preparation, separation, and the detection strategies employed. The extraction from tissue samples was performed in most cases by solid–liquid extraction, whereas the clean-up was performed by solid-phase extraction. The identification and quantification of EOCs in crops from the agricultural field (i.e. parts per billion range) is usually performed by using mass spectrometry techniques such as single quadrupole mass spectrometry or tandem mass spectrometry coupled to high resolution chromatographic techniques. Enzyme-linked immunosorbent assays are more rarely used. New developments such as in vivo solid-phase microextraction (SPME) and the assessment of the bioavailability–bioaccesibility of contaminants in crops are shown. The main scope of this review is to critically evaluate the current state of the art of the analytical techniques used and to identify the research needs in the determination of EOCs in crops.  相似文献   

19.
20.
A rapid and sensitive method for the extraction and determination of four major polyphenolic components in Euphoria longana Lam. seeds is presented for the first time based on matrix solid‐phase dispersion extraction followed by ultra high performance liquid chromatography with hybrid triple quadrupole linear ion trap mass spectrometry. Matrix solid‐phase dispersion method was designed for the extraction of Euphoria longana seed constituents and compared with microwave‐assisted extraction and ultrasonic‐assisted extraction methods. An Ultra high performance liquid chromatography with hybrid triple quadrupole linear ion‐trap mass spectrometry method was developed for quantitative analysis in multiple‐reaction monitoring mode in negative electrospray ionization. The chromatographic separation was accomplished using an ACQUITY UPLC BEH C18 (2.1 mm × 50 mm, 1.7 μm) column with gradient elution of 0.1% aqueous formic acid and 0.1% formic acid in acetonitrile. The developed method was validated with acceptable linearity (r2 > 0.999), precision (RSD ≤ 2.22%) and recovery (RSD ≤ 2.35%). The results indicated that matrix solid‐phase dispersion produced comparable extraction efficiency compared with other methods nevertheless was more convenient and time‐saving with reduced requirements on sample and solvent volumes. The proposed method is rapid and sensitive in providing a promising alternative for extraction and comprehensive determination of active components for quality control of Euphoria longana products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号