首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel graphene oxide decorated with silver nanoparticles coating on a stainless‐steel fiber for solid‐phase microextraction was prepared. Scanning electron microscopy and X‐ray photoelectron spectroscopy were used to characterize the coating surface and showed that silver nanoparticles were dispersed on the wrinkled graphene oxide surface. Coupled to gas chromatography with flame ionization detection, the extraction abilities of the fiber for polycyclic aromatic hydrocarbons were examined in the headspace solid‐phase microextraction mode. The extraction parameters including adsorption time, adsorption temperature, salt concentration, desorption time and desorption temperature were investigated. Under the optimized condition, wide linearity with low limits of detection from 2 to 10 ng/L was obtained. The relative standard deviations for single‐fiber repeatability and fiber‐to‐fiber reproducibility were less than 10.6 and 17.5%, respectively. The enrichment factors were from 1712.5 to 4503.7, showing the fiber has good extraction abilities. Moreover, the fiber exhibited a good stability and could be reused for more than 120 times. The established method was also applied for determination of polycyclic aromatic hydrocarbons in two real water samples and the recoveries of analytes ranged from 84.4–116.3% with relative standard deviations less than 16.2%.  相似文献   

2.
A solid‐phase microextraction fiber was prepared by mixing graphene oxide and hydroxyl‐terminated polydimethylsiloxane together and then coating the mixture on the surface of etched stainless‐steel wire by sol–gel technology. After aging by heating, the graphene oxide‐polydimethylsiloxane composite coated fiber was used for the direct solid phase microextraction of triazole fungicides from water samples. The properties of the graphene oxide‐polydimethylsiloxane coating were characterized by transmission electron microscopy and thermogravimetric analysis. And the chemical stability of the coating was tested as well. Several important experimental parameters that could influence the extraction efficiency such as desorption temperature and time, extraction temperature and time, sample pH and stirring rate, were investigated and optimized. Under the optimized conditions, the limits of detection were in the range from 0.01 to 0.03 μg/L. The results indicated that the homemade fiber had the advantages of good thermal and chemical stability and high extraction efficiency, which was successfully applied to the analysis of triazoles in water samples.  相似文献   

3.
Graphene is a novel and interesting carbon material that could be used for the separation and purification of some chemical compounds. In this investigation, graphene was used as a novel fiber‐coating material for the solid‐phase microextraction (SPME) of four triazine herbicides (atrazine, prometon, ametryn and prometryn) in water samples. The main parameters that affect the extraction and desorption efficiencies, such as the extraction time, stirring rate, salt addition, desorption solvent and desorption time, were investigated and optimized. The optimized SPME by graphene‐coated fiber coupled with high‐performance liquid chromatography‐diode array detection (HPLC‐DAD) was successfully applied for the determination of the four triazine herbicides in water samples. The linearity of the method was in the range from 0.5 to 200 ng/mL, with the correlation coefficients (r) ranging from 0.9989 to 0.9998. The limits of detection of the method were 0.05‐0.2 ng/mL. The relative standard deviations varied from 3.5 to 4.9% (n=5). The recoveries of the triazine herbicides from water samples at spiking levels of 20.0 and 50.0 ng/mL were in the range between 86.0 and 94.6%. Compared with two commercial fibers (CW/TPR, 50 μm; PDMS/DVB, 60 μm), the graphene‐coated fiber showed higher extraction efficiency.  相似文献   

4.
A sol–gel coating technique was applied for the preparation of a solid‐phase microextraction fiber by coating the metal–organic framework UiO‐67 onto a stainless‐steel wire. The prepared fiber was explored for the headspace solid‐phase microextraction of five nitrobenzene compounds from water samples before gas chromatography with mass spectrometric detection. The effects of the extraction temperature, extraction time, sample solution volume, salt addition, and desorption conditions on the extraction efficiency were optimized. Under the optimal conditions, the linearity was observed in the range of 0.015–12.0 μg/L for the compounds in water samples, with the correlation coefficients (r) of 0.9945–0.9987. The limits of detection of the method were 5.0–10.0 ng/L, and the recoveries of the analytes from spiked water samples for the method were in the range of 74.0–102.0%. The precision for the measurements, expressed as the relative standard deviation, was less than 11.9%.  相似文献   

5.
We have synthesized an organic–inorganic polyaniline–halloysite nanotube composite by an in situ polymerization method. This nanocomposite is immobilized on a stainless‐steel wire and can be used as a fiber coating for solid‐phase microextraction. It was found that our new solid‐phase microextraction fiber is an excellent adsorbent for the extraction of some volatile organic compounds in aqueous samples in combination with gas chromatography and mass spectrometry. The coating can be prepared easily, is mechanically stable, and exhibits relatively high thermal stability. It is capable of extracting phenolic compounds from water samples. Following thermal desorption, the phenols were quantified by gas chromatography with mass spectrometry. The effects of extraction temperature, extraction time, sample ionic strength, stirring rate, pH, desorption temperature and desorption time were studied. Under optimal conditions, the repeatability for one fiber (n = 5), expressed as the relative standard deviation, is between 6.2 and 9.1%. The detection limits range from 0.005 to 4 ng/mL. The method offers the advantage of being simple to use, with a shorter analysis time, lower cost of equipment and higher thermal stability of the fiber in comparison to conventional methods of analysis.  相似文献   

6.
To prevent the stripping of coating sorbents in headspace solid‐phase microextraction, a porous extraction probe with packed sorbent was introduced by using a porous stainless steel needle tube and homemade sol–gel sorbents. The traditional stainless‐steel needle tube was punched by a laser to obtain two rows of holes, which supply a passageway for analyte vapor during extraction and desorption. The sorbent was prepared by a traditional sol–gel method with both poly(ethylene glycol) and hydroxy‐terminated silicone oil as coating ingredients. Eight polycyclic aromatic hydrocarbons and six benzene series compounds were used as illustrative semi‐volatile and volatile organic compounds in sequence to verify the extraction performance of this porous headspace solid‐phase microextraction probe. It was found that the analysis method combining a headspace solid‐phase microextraction probe and gas chromatography with mass spectrometry yielded determination coefficients of no less than 0.985 and relative standard deviations of 4.3–12.4%. The porous headspace solid‐phase microextraction probe showed no decrease of extraction ability after 200 uses. These results demonstrate that the packed extraction probe with porous structure can be used for headspace solid‐phase microextraction. This novel design may overcome both the stripping and breakage problems of the conventional coating fiber.  相似文献   

7.
An oriented titanium‐nickel oxide composite nanotubes coating was in situ grown on a nitinol wire by direct electrochemical anodization in ethylene glycol with ammonium fluoride and water for the first time. The morphology and composition of the resulting coating showed that the anodized nitinol wire provided a titania‐rich coating. The titanium‐nickel oxide composite nanotubes coated fiber was used for solid‐phase microextraction of different aromatic compounds coupled to high‐performance liquid chromatography with UV detection. The titanium‐nickel oxide composite nanotubes coating exhibited high extraction capability, good selectivity, and rapid mass transfer for weakly polar UV filters. Thereafter the important parameters affecting extraction efficiency were investigated for solid‐phase microextraction of UV filters. Under the optimized conditions, the calibration curves were linear in the range of 0.1–300 μg/L for target UV filters with limits of detection of 0.019–0.082 μg/L. The intraday and interday precision of the proposed method with the single fiber were 5.3–7.2 and 5.9–7.9%, respectively, and the fiber‐to‐fiber reproducibility ranged from 6.3 to 8.9% for four fibers fabricated in different batches. Finally, its applicability was evaluated by the extraction and determination of target UV filters in environmental water samples.  相似文献   

8.
A high‐performance metal oxide polymer magnetite/polyethylene glycol nanocomposite was prepared and coated in situ on the surface of the optical fiber by sol–gel technology. The magnetite nanoparticles as nanofillers were synthesized by a coprecipitation method and bonded with polyethylene glycol as a polymer. The chemically bonded coating was evaluated for the headspace solid–phase microextraction of some environmentally important volatile organic compounds from aqueous samples in combination with gas chromatography and mass spectrometry. The prepared fiber was characterized by scanning electron microscopy and Fourier transform infrared spectroscopy. The mass ratio of nanofiller and polymer on the coating extraction efficiency, morphology, and stability were investigated. The parameters affecting the extraction efficiency, including the extraction time and temperature, the ionic strength, desorption temperature, and time were optimized. The sol–gelized fiber showed excellent chemical stability and longer lifespan. It also exhibited high extraction efficiency compared to the two types of commercial fibers. For volatile organic compounds analysis, the new fiber showed low detection limits (0.008–0.063 ng/L) and wide linearity (0.001–450 × 104 ng/L) under the optimized conditions. The repeatability (interday and intraday) and reproducibility were 4.13–10.08 and 5.98–11.61%, and 7.35–14.79%, respectively (n = 5). For real sample analysis, three types of water samples (ground, surface, and tap water) were studied.  相似文献   

9.
Graphene oxide was bonded onto a silver‐coated stainless‐steel wire using an ionic liquid as the crosslinking agent by a layer‐by‐layer strategy. The novel solid‐phase microextraction fiber was characterized by scanning electron microscopy, energy‐dispersive X‐ray spectroscopy and Raman microscopy. A multilayer graphene oxide layer was closely coated onto the supporting substrate. The thickness of the coating was about 4 μm. Coupled with gas chromatography, the fiber was evaluated using five polycyclic aromatic hydrocarbons (fluorene, anthracene, fluoranthene, 1,2‐benzophenanthrene, and benzo(a)pyrene) as model analytes in direct‐immersion mode. The main conditions (extraction time, extraction temperature, ionic strength, and desorption time) were optimized by a factor‐by‐factor optimization. The as‐established method exhibited a wide linearity range (0.5–200 μg/L) and low limits of determination (0.05–0.10 μg/L). It was applied to analyze environmental water samples of rain and river water. Three kinds of the model analytes were quantified and the recoveries of samples spiked at 10 μg/L were in the range of 92.3–120 and 93.8–115%, respectively. The obtained results indicated the fiber was efficient for solid‐phase microextraction analysis.  相似文献   

10.
A new polyethylene glycol/graphene oxide composite material bonded on the surface of a stainless‐steel wire was used for solid‐phase microextraction. The layer‐by‐layer structure increased the adsorption sites of the novel fiber, which could facilitate the extraction of trace compounds. The polyethylene glycol/graphene oxide was characterized by Fourier transform infrared spectroscopy and elemental analysis, which verified that polyethylene glycol was successfully grafted onto the surface of graphene oxide. The performance of the polyethylene glycol/graphene oxide coated fiber was investigated for phenols and phthalate esters coupled with gas chromatography with flame ionization detection under the optimal extraction and desorption conditions, and the proposed method exhibited an excellent extraction capacity and high thermal stability. Wide linear ranges were obtained for the analytes with good correlation coefficients in the range of 0.9966–0.9994, and the detection limits of model compounds ranged from 0.003 to 0.025 μg/L. Furthermore, the as‐prepared fiber was used to determine the model compounds in the water and soil samples and satisfactory results were obtained.  相似文献   

11.
Stainless‐steel wires coated with mesoporous titanium oxide were placed into a polyether ether ketone tube for in‐tube solid‐phase microextraction, and the coating sorbent was characterized by X‐ray diffraction and scanning electron microscopy. It was combined with high‐performance liquid chromatography to build an online system. Using eight polycyclic aromatic hydrocarbons as the analytes, some conditions including sample flow rate, sample volume, organic solvent content, and desorption time were investigated. Under optimum conditions, an online analysis method was established and provided good linearity (0.03–30 μg/L), low detection limits (0.01–0.10 μg/L), and high enrichment factors (77.6–678). The method was applied to determine target analytes in river water and water sample of coal ash, and the recoveries are in the range of 80.6–106.6 and 80.9–103.5%, respectively. Compared with estrogens and plasticizers, extraction coating shows better extraction efficiency for polycyclic aromatic hydrocarbons.  相似文献   

12.
We describe the synthesis of a layered zinc hydroxide‐dodecyl sulfate organic–inorganic hybrid nanocomposite as a new solid‐phase microextraction fiber. The fiber coating can be prepared easily in a short time and the reaction is at room temperature; it is mechanically stable and exhibits relatively high thermal stability. The synthesized layered zinc hydroxide‐dodecyl sulfate nanocomposite was successfully prepared and immobilized on a stainless steel wire and evaluated for the extraction of aromatic compounds from aqueous sample solutions in combination with gas chromatography and mass spectrometry. The method yields good results for some validation parameters. Under optimum conditions (extraction time: 15 min, extraction temperature: 50°C, desorption time: 1 min, desorption temperature: 250°C, salt concentration: 0.5 g/mL), the limit of detection and dynamic linear range were 0.69–3.2 ng/L and 10–500 ng/L, respectively. The method was applied to the analyses of benzene, toluene, ethylbenzene, and o‐, p‐, and m‐xylenes in two real water samples collected from the Aji river and Mehran river, Tabriz, Iran. Under optimum conditions, the repeatability and reproducibility for one fiber (n = 3), expressed as the relative standard deviation, was 3.2–7.3% and 4.2–11.2% respectively. The fibers are thermally stable and yield better recoveries than conventional methods of analysis.  相似文献   

13.
A fiber‐coated polypyrrole–montmorillonite nanocomposite was prepared for solid‐phase microextraction. The fiber coating can be prepared easily; it is mechanically stable and exhibits relatively high thermal stability. The prepared fiber was evaluated for the extraction of some phenolic compounds from aqueous sample solutions by gas chromatography–mass spectrometry. The effects of the extraction and desorption parameters including extraction time, extraction temperature, stirring rate, ionic strength, pH and desorption temperature and time have been studied. At optimum conditions, the repeatability for one fiber (n = 5), expressed as % relative standard deviation was between 6.5 and 7.8% for the phenolic compounds. The detection limits for the studied phenolic compounds were between 0.05–1.3 ng/mL. The developed method offers the advantage of being simple to use, with shorter analysis time, lower cost, thermal stability of the fibers, and high relative recovery in comparison to conventional methods of analysis.  相似文献   

14.
We report the electrochemical fabrication of a poly(2,2‐bithiophene‐co‐3‐methylthiophene)‐graphene composite coating and its application in the headspace solid‐phase microextraction and gas chromatography determination of benzenes (i.e., bromobenzene, 4‐bromotoluene, 2‐nitrotoluene, 3‐nitrotoluene and 1,2,4‐trichlorobenzene). The coating was uniform and showed cauliflower‐like microstructure. It had high thermal stability (up to 375°C) and could be used for at least 180 times of solid‐phase microextraction without a decrease in extraction performance. Furthermore, it presented high extraction capacity for the benzenes due to the hydrophobic effect and π–π interaction between the analytes and the coating. Under optimized extraction conditions, good linearity (correlation coefficients higher than 0.9946), wide linear range (0.01–50 μg/L), and low limits of detection (5.25–12.5 ng/L) were achieved for these analytes. The relative standard deviation was lower than 5.7% for five successive measurements with one fiber, and the relative standard deviation for fiber‐to‐fiber was 4.9–6.8% (n = 5). The solid‐phase microextraction and gas chromatography method was successfully applied for the determination of three real samples, and the recoveries for standards added were 89.6–106% for nail polish, 85.8–110% for hair dye, and 90–106.2% for correction fluid, respectively.  相似文献   

15.
A mesoporous carbon was fabricated using MCM‐41 as a template and sucrose as a carbon source. The carbon material was coated on stainless‐steel wires by using the sol–gel technique. The prepared solid‐phase microextraction fiber was used for the extraction of five volatile aromatic compounds (chlorobenzene, ethylbenzene, o‐xylene, bromobenzene, and 4‐chlorotoluene) from tea beverage samples (red tea and green tea) prior to gas chromatography with mass spectrometric detection. The main experimental parameters affecting the extraction of the volatile aromatic compounds by the fiber, including the extraction time, sample volume, extraction temperature, salt addition, and desorption conditions, were investigated. The linearity was observed in the range from 0.1 to 10.0 μg/L with the correlation coefficients (r) ranging from 0.9923 to 0.9982 and the limits of detection were less than 10.0 ng/L. The recoveries of the volatile aromatic compounds by the method from tea beverage samples at spiking levels of 1.0 and 10.0 μg/L ranged from 73.1 to 99.1%.  相似文献   

16.
In this study, a new covalent organic framework, consisting of tetra(4‐aminophenyl)porphyrin and tris(4‐formyl phenyl)amine, was layer‐by‐layer immobilized on stainless‐steel wire as a coating for microextraction. The fabrication process was easy and controllable under mild conditions. The as‐grown fiber was applied to extract polycyclic aromatic hydrocarbons in aqueous solution via head‐space solid‐phase microextraction. Furthermore, it was analyzed by gas chromatography with a flame ionization detector. A wide linear range (0.1–50 µg/L), low limits of detection (0.006–0.024 µg/L, signal‐to‐noise ratio = 3), good repeatability (intra‐fiber, n = 6, 3.1–8.50%), and reproducibility (fiber to fiber; n = 3, 5.79–9.98%), expressed as relative standard deviations, demonstrate the applicability of the newly developed coating. This new material was successfully utilized in real sample extraction with a satisfactory result. Potential parameters affecting the extraction efficiency, including extraction temperature and extraction time, salt concentration, agitation speed, sample volume, desorption temperature, and time, were also optimized and discussed.  相似文献   

17.
A novel palladium solid‐phase microextraction coating was fabricated on a stainless‐steel wire by a simple in situ oxidation–reduction process. The palladium coating exhibited a rough microscaled surface and its thickness was about 2 μm. Preparation conditions (reaction time and concentration of palladium chloride and hydrochloric acid) were optimized in detail to achieve sufficient extraction efficiency. Extraction properties of the fiber were investigated by direct immersion solid‐phase microextraction of several polycyclic aromatic hydrocarbons and phthalate esters in aqueous samples. The extracted analytes were transferred into a gas chromatography system by thermal desorption. The effect of extraction and desorption conditions on extraction efficiency were investigated. Under the optimum conditions, good linearity was obtained and correlation coefficients between 0.9908 and 0.9990 were obtained. Limits of detection were 0.05–0.10 μg/L for polycyclic aromatic hydrocarbons and 0.3 μg/L for phthalate esters. Their recoveries for real aqueous samples were in the range from 97.1 to 121% and from 89.1 to 108%, respectively. The intra‐ and interday tests were also investigated with three different addition levels, and satisfactory results were also obtained.  相似文献   

18.
In this work, zinc oxide/polypyrrole nanocomposite coating was fabricated on stainless steel and evaluated as a novel headspace solid‐phase microextraction fiber coating for extraction of ultra‐trace amounts of environmental pollutants, namely, phthalate esters, in water samples. The fiber nanocomposite were prepared by a two‐step process including the electrochemical deposition of polypyrrole on the surface of stainless steel in the first step, and electrochemical deposition of zinc oxide nanosheets in the second step. Porous structure together with zinc oxide nanosheets with the average diameter of 30 nm were observed on the surface by using scanning electron microscopy. The effective parameters on extraction of phthalate esters (i.e., extraction temperature, extraction time, desorption temperature, desorption time, salt concentration, and stirring rate) were investigated and optimized by one‐variable‐at‐a‐time method. Under optimized conditions (extraction temperature, 90°C; extraction time, 40 min; desorption temperature, 270°C; desorption time, 5 min; salt concentration, 25% w/v; and stirring rate, 1000 rpm), the limits of detection were in the range of 0.05–0.8 μg/L, and the repeatability and fiber‐to‐fiber reproducibility were in the ranges of 6.1–7.3% and 8.7–10.2%, respectively.  相似文献   

19.
A selective and reproducible off‐line solid‐phase microextraction procedure was developed for the simultaneous enantioselective determination of mirtazapine (MRT), demethylmirtazapine and 8‐hydroxymirtazapine in human urine. CE was used for optimization of the extraction procedure whereas LC‐MS was used for method validation and application. The influence of important factors in the solid‐phase microextraction efficiency is discussed, such as the fiber coatings, extraction time, pH, ionic strength, temperature and desorption time. Before extraction, human urine samples were submitted to enzymatic hydrolysis at 37°C for 16 h. Then, the enzyme was precipitated with trichloroacetic acid and the pH was adjusted to 8 with 1 mol/L pH 11 phosphate buffer solution. In the extraction, the analytes were transferred from the aqueous solution to the polydimethylsiloxane‐divinylbenzene fiber coating and then desorbed in methanol. The mean recoveries were 5.4, 1.7 and 1.0% for MRT, demethylmirtazapine and 8‐hydroxymirtazapine enantiomers, respectively. The method was linear over the concentration range of 62–1250 ng/mL. The within‐day and between‐day assay precision and accuracy were lower than 15%. The method was successfully employed in a preliminary cumulative urinary excretion study after administration of racemic MRT to a healthy volunteer.  相似文献   

20.
A novel in‐tube solid‐phase microextraction method based on a graphene oxide coated column was developed for the determination of triazines in waters. This column was prepared by the covalent modification of monolayer graphene oxide sheets onto the inner wall of a fused‐silica capillary. Scanning electron microscopy showed that the thickness of the graphene oxide coating was ~30 nm, with a porous, wrinkled membrane‐like structure. Its performance was evaluated through the extraction of triazines in water. Results showed that the coating was stable for at least 100 replicate extractions, and variety of multi‐columns was less than 10%. Flow rate, loading volume, pH, and ionic strength of samples played an important effect on the extraction. The high extraction efficiency was mainly attributed to π–π stacking and hydrogen bonding interactions. The in‐tube solid‐phase microextraction was used in the determination of triazines with liquid chromatography and tandem mass spectrometry, and the detection limits were 0.0005–0.005 μg/L for five triazine compounds. Further, the method was applied to the analysis of triazine herbicides in real samples including tap water, sea water, and river water, and the recoveries were 82.8–112.0, 85.4–110.5, and 81.6–105.9%, respectively, with RSDs of 2.7–7.1%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号