首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Pesticides, widely applied in agriculture, can produce a variety of transformation products and their continuous use causes deleterious effects to ecosystem. Efficient and sensitive analytical techniques for enrichment and analysis of pesticides samples are highly required. Compared with other extraction methods, solid‐phase micro extraction is a solvent free, cost effective, robust, versatile, and high throughput sample preparation technique, especially for the analysis of pesticides from complicated matrices. Coupling of solid‐phase micro extraction with gas chromatography and mass spectrometry and liquid chromatography–mass spectrometry has been extensively applied in pesticide analysis. On the other hand, in recent years, combination of fast separation using solid‐phase micro extraction and rapid detection using ambient mass spectrometry is providing highly efficient pesticide screening. This article summarizes the applications of solid‐phase micro extraction coupled to mass spectrometry for pesticides analysis.  相似文献   

2.
An ultrasensitive method for the simultaneous analysis of pesticides residues in tobacco was developed with online size exclusion chromatography with gas chromatography and tandem mass spectrometry. Tobacco samples were extracted with the solvent mixture of cyclohexane and acetone (7:3, v/v) and centrifuged. Then, the supernatant liquors were injected directly into the online size exclusion chromatography with gas chromatography and tandem mass spectrometry without any other purification procedures after being filtered with a 0.22 μm organic phase filter. The matrix interferences were effectively removed and recoveries of most pesticides were in the range of 72–121%. Especially, for chlorothalonil, the analysis efficiency of this method was much more favorable than that of the general method, in which dispersive solid‐phase extraction was used as an additional purified procedure. In addition, the limits of quantitation of this method were from 1 to 50 μg/kg. Therefore, a rapid, cost‐effective, labor‐saving method was proposed in the present work, which was suitable for the analysis of 41 pesticide residues in tobacco.  相似文献   

3.
Summary A comparison between different element selective detectors for the determination of organophosphorus and organochlorine pesticide residues, from fruit and vegetables, was performed by capillary GC with electron capture detector (ECD), nitrogen phosphorus detector (NPD), flame photometric detector (FPD) in the sulphur and phosphorus modes, and mass spectrometry detector (MSD) in selected ion monitoring (SIM) mode. Pesticides were extracted from the different foodstuffs by Matrix Solid Phase Dispersion (MSPD). Recoveries of 41–108 % with relative standard deviation of 2–14 % in the concentration range 0.5–10 μg L−1 were obtained in oranges, lemons, grapefruit, pears, plums, lettuces and tomatoes. The results demonstrated that the extracts of all the samples can be analyzed by the detectors used since no interfering co-extracted compounds were detected.  相似文献   

4.
In this paper, we describe the development of an oil-absorbing matrix solid-phase dispersion extraction with comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry suitable for screening of 68 pesticide residues (PRs) in peanut, soybean, rape seed, sesame, and sunflower seed. The 68 PRs include 27 kinds of organophosphorus, 23 organic chlorines, 11 synthetic pyrethroids, and 7 carbamates. Heptachlor epoxide was used as the internal standard. Aminopropyl silica was chosen as the dispersion sorbent of the oil-absorbing matrix solid-phase dispersion extraction and was applied to capture hydrophobic components from high oil samples. A 35-min orthogonal separation was performed by using comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry with a nonpolar-polar column set. Identification of 68 PRs in the extract was finished by using the time-of-flight mass spectrometry in the assistance of an automated peak-find and spectral deconvolution software. A screening based on control design was introduced and explained. This screening method considerably reduced the cost for the quantitative and confirmatory analyses. The quality of present screening method was evaluated by the Document No. SANCO/10684/2009. The false positive rate and false negative rate provide a useful tool for the evaluation of screening performance.  相似文献   

5.
A sensitive and robust multiresidue method for the simultaneous analysis of 114 pesticides in tobacco was developed based on solid‐phase extraction coupled with gas chromatography and tandem mass spectrometry. In this strategy, tobacco samples were extracted with acetonitrile and cleaned up with a multilayer solid‐phase extraction cartridge Cleanert TPT using acetonitrile/toluene (3:1) as the elution solvent. Two internal standards of different polarity were used to meet simultaneous pesticides quantification demands in the tobacco matrix. Satisfactory linearity in the range of 10–500 ng/mL was obtained for all 114 pesticides with linear regression coefficients higher than 0.994. The limit of detection and limit of quantification values were 0.02–5.27 and 0.06–17.6 ng/g, respectively. For most of the pesticides, acceptable recoveries in the range of 70–120% and repeatabilities (relative standard deviation) of <11% were achieved at spiking levels of 20, 100, and 400 ng/g. Compared with the reported multiresidue analytical method, the proposed method provided a cleaner test solution with smaller amounts of pigments, fatty acids as well as other undesirable interferences. The development and validation of the high sensitivity, high selectivity, easy automation, and high‐throughput analytical method meant that it could be successfully used for the determination of pesticides in tobacco samples.  相似文献   

6.
A simple, efficient, and sensitive strategy by coupling matrix solid‐phase dispersion with ultra high performance liquid chromatography quadrupole time‐of‐flight mass spectrometry was proposed to extract and determine three types of components (including seven analytes) in Chinese patent medicines Chenxiangqu. The highly ordered mesoporous material Fe‐SBA‐15 synthesized under weakly acidic conditions was selected as a dispersant in matrix solid phase dispersion extraction for the first time. Several parameters including the mass ratio of sample to dispersant, the type of dispersant, the grinding time, and the elution condition were investigated in this work. Under the optimized conditions, 20 compounds were identified by quadrupole time‐of‐flight mass spectrometry and seven analytes were quantified. The results demonstrated that the developed method has good linearity (r > 0.9995), and the limits of detection of the analytes were as low as 0.55 ng/mL. The recoveries of all seven analytes ranged from 97.6 to 104.6% (relative standard deviation < 3.4%). Finally, the improved method was successfully applied to determination of five batches of Chenxiangqu samples, which provided a robust method in quality control of Chinese patent medicines Chenxiangqu. The developed strategy also shows its great potential in analysis of complex matrix samples.  相似文献   

7.
Headspace solid‐phase microextraction coupled with cryotrap gas chromatography and mass spectrometry was applied to the analysis of volatile organic compounds in pleural effusions. The highly volatile organic compounds were separated successfully with high sensitivity by the employment of a cryotrap device, with the construction of a cold column head by freezing a segment of metal capillary with liquid nitrogen. A total of 76 volatile organic compounds were identified in 50 pleural effusion samples (20 malignant effusions and 30 benign effusions). Among them, 34 more volatile organic compounds were detected with the retention time less than 8 min, by comparing with the normal headspace solid‐phase microextraction coupled with gas chromatography and mass spectrometry method. Furthermore, 24 volatile organic compounds with high occurrence frequency in pleural effusion samples, 18 of which with the retention time less than 8 min, were selected for the comparative analysis. The results of average peak area comparison and box‐plot analysis showed that except for cyclohexanone, 2‐ethyl‐1‐hexanol, and tetramethylbenzene, which have been reported as potential cancer biomarkers, cyclohexanol, dichloromethane, ethyl acetate, n‐heptane, ethylbenzene, and xylene also had differential expression between malignant and benign effusions. Therefore, the proposed approach was valuable for the comprehensive characterization of volatile organic compounds in pleural effusions.  相似文献   

8.
In this work, a facile and environmentally friendly solid‐phase microextraction assay based on on‐fiber derivatization coupled with gas chromatography and mass spectrometry was developed for determining four nonvolatile index biogenic amines (putrescine, cadaverine, histamine, and tyramine) in fish samples. In the assay, the fiber was firstly dipped into a solution with isobutyl chloroformate as derivatization reagent and isooctane as extraction solvent. Thus, a thin organic liquid membrane coating was developed. Then the modified fiber was immersed into sample solution to extract four important bioamines. Afterwards, the fiber was directly inserted into gas chromatography injection port for thermal desorption. 1,7‐Diaminoheptane was employed as internal standard reagent for quantification of the targets. The limits of detection of the method were 2.98–45.3 μg/kg. The proposed method was successfully applied to the detection of bioamines in several fish samples with recoveries ranging 78.9–110%. The organic reagent used for extraction was as few as microliter that can greatly reduce the harm to manipulator and environment. Moreover, the extraction procedures were very simple without concentration and elution procedures, which can greatly simplify the pretreatment process. The assay can be extended to the in situ screening of other pollutant in food safety by changing the derivatization reagent.  相似文献   

9.
How to determine the multipesticide residues in vegetables is an important problem. In this study, a new molecularly imprinted polymer was synthesized using O,O‐dimethyl thiophosphoryl chloride, an intermediate for the manufacture of organophosphorous pesticides, as the template. Characterization test indicated that the synthesized polymer exhibited good recognition and selectivity for dichlorvos, methamidophos, acephate, folimat, monocrotophos, parathion‐methyl, phosphamidon, and malathion. A molecularly imprinted SPE coupled to GC for simultaneous separation and determination of eight organophosphorous pesticides residues was developed. Under optimal conditions, the linear range of this method was 0.001–10.0 mg/L. The LOD of this method was in the range of 0.13–0.90 μg/kg. With a flow rate of 2.5 mL/min for loading 100 mL, the enrichment factor in the range of 25–480 for the eight organophosphorous pesticides was obtained. The RSD of the eight organophosphorous pesticides based on five replicates was from 1.50 to 4.09%. The accuracy of the proposed method was evaluated by recovery measurements on spiked samples, and good recovery rates ranging from 80.11 to 97.70% were achieved. Moreover, this method was evaluated for the quantitative detection of eight organophosphorous pesticide residues in leek and pakchoi samples.  相似文献   

10.
The quantification of three alkaloids is important because quantitative study is a means of assessing the reliability of the experimental method, and three alkaloids of peimine, peiminine, and peimisine are main active ingredients in Chinese Pharmacopoeia 2015. An effective method based on the matrix solid‐phase dispersion microextraction was developed for the extraction of alkaloid compounds in Fritillariae Thunbergii Bulbus. Target analytes were analyzed by capillary electrophoresis coupled with quadrupole time‐of‐flight mass spectrometry. The optimized experimental condition was that 50 mg Fritillariae Thunbergii Bulbus was blended homogeneously with 10 mg citric acid for 5 min. Two hundred microliters of water acidized by 1 mol/L hydrochloric acid (pH = 4.5) was selected to elute tested alkaloids. The results demonstrated that the investigated method had low limits of detection (1.32–1.59 ng/mL), good recoveries (86.63–98.12%), and reproducibility (relative standard deviations of peak areas < 0.87%). The proposed matrix solid‐phase dispersion microextraction coupled with capillary electrophoresis combined with quadrupole time‐of‐flight mass spectrometry was successfully applied for the extraction of alkaloids in plants.  相似文献   

11.
A method was developed for the determination of clenbuterol in meat using stable‐isotope‐dilution gas chromatography with mass spectrometry coupled with solid‐phase microextraction and on‐fiber derivatization. The samples were first homogenized with hydrochloric acid followed by protein deposition. After headspace solid‐phase microextraction and on‐fiber derivatization, the content of clenbuterol was measured with the aid of stable‐isotope dilution. The condition of solid‐phase microextraction was optimized by central composite design. The relative standard deviations, limit of detection, and recoveries for clenbuterol were 4.2–9.2%, 0.48 μg/kg, and 96–104%, respectively. The proposed method was satisfactory for analysis of real samples as compared with the Chinese standard method.  相似文献   

12.
A method was developed for the determination of nine volatile N‐nitrosamines in tobacco and smokeless tobacco products. The targets are N‐nitrosodimethylamine, N‐nitrosopyrrolidine, N‐nitrosopiperidine, N‐nitrosomorpholine, N‐nitrosoethylmethylamine, N‐nitrosodiethylamine, N‐nitrosodipropylamine, N‐nitrosobuylmethylmine, and N‐nitrosodibutylamine. The samples were treated by dispersive solid‐phase extraction using 1 g of primary secondary amine and 0.5 g of carbon and then analyzed by gas chromatography with tandem mass spectrometry with an electron impact ion source. The recoveries for the targets ranged from 84 to 118%, with <16% relative standard deviations at three spiking levels of 0.5, 1.25, and 2.5 ng/g. The limits of detection ranged from 0.03 to 0.15 ng/g. With the use of the proposed method, we detected the presence of six nitrosamines in the range of 0.4–30.7 ng/g. The study demonstrated that the method could be used as a rapid, convenient, and high‐throughput method for N‐nitrosamines analysis in tobacco matrix.  相似文献   

13.
A novel infrared‐assisted extraction coupled to headspace solid‐phase microextraction followed by gas chromatography with mass spectrometry method has been developed for the rapid determination of the volatile components in tobacco. The optimal extraction conditions for maximizing the extraction efficiency were as follows: 65 μm polydimethylsiloxane‐divinylbenzene fiber, extraction time of 20 min, infrared power of 175 W, and distance between the infrared lamp and the headspace vial of 2 cm. Under the optimum conditions, 50 components were found to exist in all ten tobacco samples from different geographical origins. Compared with conventional water‐bath heating and nonheating extraction methods, the extraction efficiency of infrared‐assisted extraction was greatly improved. Furthermore, multivariate analysis including principal component analysis, hierarchical cluster analysis, and similarity analysis were performed to evaluate the chemical information of these samples and divided them into three classifications, including rich, moderate, and fresh flavors. The above‐mentioned classification results were consistent with the sensory evaluation, which was pivotal and meaningful for tobacco discrimination. As a simple, fast, cost‐effective, and highly efficient method, the infrared‐assisted extraction coupled to headspace solid‐phase microextraction technique is powerful and promising for distinguishing the geographical origins of the tobacco samples coupled to suitable chemometrics.  相似文献   

14.
A method based on matrix solid‐phase dispersion extraction followed by ultra high performance liquid chromatography with tandem mass spectrometry is presented for the extraction and determination of phenolic compounds in Equisetum palustre. This method combines the high efficiency of matrix solid‐phase dispersion extraction and the rapidity, sensitivity, and accuracy of ultra high performance liquid chromatography with tandem mass spectrometry. The influential parameters of the matrix solid‐phase dispersion extraction were investigated and optimized. The optimized conditions were as follows: silica gel was selected as dispersing sorbent, the ratio of silica gel to sample was selected to be 2:1 (400/200 mg), and 8 mL of 80% methanol was used as elution solvent. Furthermore, a fast and sensitive ultra high performance liquid chromatography with tandem mass spectrometry method was developed for the determination of nine phenolic compounds in E. palustre. This method was carried out within <6 min, and exhibited satisfactory linearity, precision, and recovery. Compared with ultrasound‐assisted extraction, the proposed matrix solid‐phase dispersion procedure possessed higher extraction efficiency, and was more convenient and time saving with reduced requirements on sample and solvent amounts. All these results suggest that the developed method represents an excellent alternative for the extraction and determination of active components in plant matrices.  相似文献   

15.
A simple and effective sample preparation process based on miniaturized matrix solid‐phase dispersion was developed for simultaneous determination of phenolic acids (gallic acid, chlorogenic acid, ferulic acid, 3,5‐dicaffeoylqunic acid, 1,5‐dicaffeoylqunic acid, rosmarinic acid, lithospermic acid, and salvianolic acid B), flavonoids (kaempferol‐3‐O‐rutinoside, calycosin, and formononetin), lactones (ligustilide and butyllidephthalide), monoterpenoids (paeoniflorin), phenanthraquinones (cryptotanshinone), and furans (5‐hydroxymethylfurfural) in Naoxintong capsule by ultra high‐performance liquid chromatography. The optimized condition was that 25 mg Naoxintong powder was blended homogeneously with 100 mg Florisil PR for 4 min. One milliliter of methanol/water (75:25, v/v) acidified by 0.05% formic acid was selected to elute all components. It was found that the recoveries of the six types of components ranged from 61.36 to 96.94%. The proposed miniaturized matrix solid‐phase dispersion coupled with ultra high‐performance liquid chromatography was successfully applied to simultaneous determination of the six types of components in Naoxintong capsules. The results demonstrated that the proposed miniaturized matrix solid‐phase dispersion coupled with ultra high‐performance liquid chromatography could be used as an environmentally friendly tool for the extraction and determination of multiple bioactive components in natural products.  相似文献   

16.
Core–shell magnetic carbon microspheres were synthesized by a simple hydrothermal method and used as a novel magnetic solid‐phase extraction adsorbent for the sensitive determination of polybrominated diphenyl ethers in environmental water samples. Gas chromatography with negative chemical ionization mass spectrometry was adopted for the detection. Box–Behnken design was used to investigate and optimize important magnetic solid‐phase extraction parameters through response surface methodology. Under the optimal conditions, low limits of detection (0.07–0.17 ng·L?1), a wide linear range (1–1000 ng·L?1), and good repeatability (0.80–4.58%) were achieved. The developed method was validated with several real water samples, and satisfactory results were obtained in the range of 72.8–97.9%. These results indicated that core–shell magnetic carbon microspheres have great potential as an adsorbent for the magnetic solid‐phase extraction of polybrominated diphenyl ethers at trace levels from environmental water samples.  相似文献   

17.
Through the use of a homemade sol–gel‐derived fiber, a headspace solid‐phase microextraction technique coupled to gas chromatography with mass spectrometry was developed for the determination of fatty acids with long, even‐numbered carbon chains (C12–C24) in soil samples. The experimental parameters such as reaction time, temperature, and ionic strength that might affect derivatization, extraction, and desorption were investigated. Under the optimized conditions, the linearity of the method ranged from 0.1 to 100 mg/L with a correlation coefficient >0.997. The limit of detection values based on a signal‐to‐noise ratio of 3:1 were determined with the concentration from 0.39 to 39.4 μg/L. The recoveries of the method for the soil samples were from 91.15 to 108.1%. This developed method using a homemade fiber showed a higher sensitivity than that using a commercial polydimethylsiloxane fiber and was also for the analysis of real soil samples from the Paomaling geological park of China.  相似文献   

18.
A multi‐pesticide residue determination method based on a modified QuEChERS (quick, easy, cheap, effective, rugged, and safe) method using multiwalled carbon nanotubes as reversed‐dispersive solid‐phase extraction material was validated in 37 representative pesticides in tobacco. Determination was performed using liquid chromatography with tandem mass spectrometry in multiple reaction monitoring mode. Three major types of tobacco leaf samples, namely, flue‐cured, burley, and oriental tobacco were studied and compared. Three factors (extraction time, external diameter, and amount of extraction material used) that could affect the performance of multi‐walled carbon nanotubes were investigated. Optimization of sample preparation and determination allowed recoveries between 70.8 and 114.8% for all 37 pesticides with < 20.0% relative standard deviations at three spiking levels of 20, 50, and 200 μg/kg. The limits of quantification and limits of detection for the 37 pesticides ranged within 0.46–28.57 and 0.14–8.57 μg/kg at a signal‐to‐noise ratio of 10 and 3, respectively.  相似文献   

19.
A sensitive liquid chromatography with tandem mass spectrometry method was developed for the determination of 11 β‐agonists (clenbuterol, salbutamol, ractopamine, terbutaline, fenoterol, cimaterol, isoxsuprine, mabuterol, mapenterol, clenproperol, and tulobuterol) in swine feed. This rapid, simple, and effective extraction method was based on matrix solid‐phase dispersion. The limit of quantification of clenbuterol, cimaterol, mabuterol, salbutamol, terbutaline, mapenterol, clenproperol, and tulobuterol was 1 μg/kg and that of ractopamine, fenoterol, and isoxsuprine was 2 μg/kg. The recoveries of β‐agonists spiked in swine feeds at a concentration range of 1–8 μg/kg were >83.1% with relative standard deviations <9.3%. This rapid and reliable method can be used to efficiently separate, characterize, and quantify the residues of 11 β‐agonists in swine feeds with advantages of simple pretreatment and environmental friendliness.  相似文献   

20.
An ultrasound‐microwave synergistic extraction coupled to headspace solid‐phase microextraction was first employed to determine the volatile components in tobacco samples. The method combined the advantages of ultrasound, microwave, and headspace solid‐phase microextraction. The extraction, separation, and enrichment were performed in a single step, which could greatly simplify the operation and reduce the whole pretreatment time. In the developed method, several experimental parameters, such as fiber type, ultrasound power, and irradiation time, were optimized to improve sampling efficiency. Under the optimal conditions, there were 37, 36, 34, and 36 components identified in tobacco from Guizhou, Hunan, Yunnan, and Zimbabwe, respectively, including esters, heterocycles, alkanes, ketones, terpenoids, acids, phenols, and alcohols. The compound types were roughly the same while the contents were varied from different origins due to the disparity of their growing conditions, such as soil, water, and climate. In addition, the ultrasound‐microwave synergistic extraction coupled to headspace solid‐phase microextraction method was compared with the microwave‐assisted extraction coupled to headspace solid‐phase microextraction and headspace solid‐phase microextraction methods. More types of volatile components were obtained by using the ultrasound‐microwave synergistic extraction coupled to headspace solid‐phase microextraction method, moreover, the contents were high. The results indicated that the ultrasound‐microwave synergistic extraction coupled to headspace solid‐phase microextraction technique was a simple, time‐saving and highly efficient approach, which was especially suitable for analysis of the volatile components in tobacco.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号