首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method for the rapid pretreatment and determination of bisphenol A in water samples based on vortex‐assisted liquid–liquid microextraction followed by high‐performance liquid chromatography with fluorescence detection was proposed in this paper. A simple apparatus consisting of a test tube and a cut‐glass dropper was designed and applied to collect the floating extraction drop in liquid–liquid microextraction when low‐density organic solvent was used as the extraction solvent. Solidification and melting steps that were tedious but necessary once the low‐density organic solvent used as extraction solvent could be avoided by using this apparatus. Bisphenol A was selected as model pollutant and vortex‐assisted liquid–liquid microextraction was employed to investigate the usefulness of the apparatus. High‐performance liquid chromatography with fluorescence detection was selected as the analytical tool for the detection of bisphenol A. The linear dynamic range was from 0.10 to 100 μg/L for bisphenol A, with good squared regression coefficient (r2 = 0.9990). The relative standard deviation (n = 7) was 4.7% and the limit of detection was 0.02 μg/L. The proposed method had been applied to the determination of bisphenol A in natural water samples and was shown to be economical, fast, and convenient.  相似文献   

2.
A simple, environmentally friendly, and efficient method, based on hollow‐fiber‐supported liquid membrane microextraction, followed by high‐performance liquid chromatography has been developed for the extraction and determination of amlodipine (AML) and atorvastatin (ATO) in water and urine samples. The AML in two‐phase hollow‐fiber liquid microextraction is extracted from 24.0 mL of the aqueous sample into an organic phase with microliter volume located inside the pores and lumen of a polypropylene hollow fiber as acceptor phase, but the ATO in three‐phase hollow‐fiber liquid microextraction is extracted from aqueous donor phase to organic phase and then back‐extracted to the aqueous acceptor phase, which can be directly injected into the high‐performance liquid chromatograph for analysis. The preconcentration factors in a range of 34–135 were obtained under the optimum conditions. The calibration curves were linear (R2 ≥ 0.990) in the concentration range of 2.0–200 μg/L for AML and 5.0–200 μg/L for ATO. The limits of detection for AML and ATO were 0.5 and 2.0 μg/L, respectively. Tap water and human urine samples were successfully analyzed for the existence of AML and ATO using the proposed methods.  相似文献   

3.
A method was established for the determination of desipramine in biological samples using liquid–liquid–liquid microextraction followed by in‐syringe derivatization and gas chromatography–nitrogen phosphorus detection. The extraction method was based on the use of two immiscible organic solvents. n‐Dodecane was impregnated in the pores of the hollow fiber and methanol was placed inside the lumen of the fiber as the acceptor phase. Acetic anhydride was used as the reagent for the derivatization of the analyte inside the syringe barrel. Parameters that affect the extraction efficiency (composition of donor and acceptor phase, ionic strength, sample temperature, and extraction time) as well as derivatization efficiency (amount of acetic anhydride and reaction time and temperature) were investigated. The limit of detection was 0.02 μg/L with intra and interday RSDs of 2.6 and 7.7%, respectively. The linearity of the method was in the range of 0.2–20 μg/L (r2 = 0.9986). The method was successfully applied to determine desipramine in human plasma and urine.  相似文献   

4.
For the first time, the low‐density solvent‐based vortex‐assisted surfactant‐enhanced emulsification liquid–liquid microextraction, followed by GC‐flame photometric detection has been developed for the determination of eight organophosphorus pesticides in aqueous samples. A small volume of organic extraction solvent (toluene) was dispersed into the aqueous samples by the assistance of surfactant and vortex agitator. The extraction was performed in a special disposable polyethylene pipette, allowing using the reagents with lower density than water as extraction solvents. The influence parameters were systemically investigated and optimized: toluene (30 μL) and Triton X‐100 (0.2 mmol/L) were used as the extraction solvent and the surfactant, respectively, and the extraction was performed for 1 min under room temperature without adding sodium chloride. Under the optimum conditions, the validation parameters such as the RSD (n = 6; 2.1–11.3%), LOD (0.005 and 0.05 μg/L), and linear range (0.1–50.0 μg/L with correlation coefficients (0.9958–0.9992) showed the method was satisfying. The proposed method has been successfully applied to the determination of the organophosphorus pesticides in real samples with recoveries between 82.8 and 100.2%.  相似文献   

5.
Vortex‐assisted liquid–liquid microextraction followed by high‐performance liquid chromatography with UV detection was applied to determine Isocarbophos, Parathion‐methyl, Triazophos, Phoxim and Chlorpyrifos‐methyl in water samples. 1‐Bromobutane was used as the extraction solvent, which has a higher density than water and low toxicity. Centrifugation and disperser solvent were not required in this microextraction procedure. The optimum extraction conditions for 15 mL water sample were: pH of the sample solution, 5; volume of the extraction solvent, 80 μL; vortex time, 2 min; salt addition, 0.5 g. Under the optimum conditions, enrichment factors ranging from 196 to 237 and limits of detection below 0.38 μg/L were obtained for the determination of target pesticides in water. Good linearities (r > 0.9992) were obtained within the range of 1–500 μg/L for all the compounds. The relative standard deviations were in the range of 1.62–2.86% and the recoveries of spiked samples ranged from 89.80 to 104.20%. The whole proposed methodology is simple, rapid, sensitive and environmentally friendly for determining traces of organophosphorus pesticides in the water samples.  相似文献   

6.
Surfactant‐assisted liquid–liquid microextraction followed by high‐performance liquid chromatography with UV detection has been developed for the simultaneous preconcentration and determination of lorazepam and nitrazepam in biological fluids. In this study, an ionic surfactant (cetyltrimethyl ammonium bromide) was used as an emulsifier. The predominant parameters affecting extraction efficiency such as the type and volume of extraction solvent, the type and concentration of surfactant, sample pH, and the concentration of salt added to the sample were investigated and opted. Under the optimum conditions (extraction solvent and its volume, 1‐octanol, 70 μL; surfactant and its concentration, 1 mL of ultra‐pure water containing 2 mmol L?1 cetyltrimethyl ammonium bromide; sample pH = 9 and salt content of 10% NaCl w/v), the preconcentration factors were obtained in the range of 202–241 and 246–265 for nitrazepam and lorazepam, respectively. The limits of quantification for both drugs were 5 μg L?1 in water sample and 10 μg L?1 in biological fluids with R2 values higher than 0.993. The suitability of the proposed method was successfully confirmed by the extraction and determination of the target drugs in human urine and plasma samples in the range of microgram per liter.  相似文献   

7.
In the present study, a rapid, simple, and highly efficient sample preparation method based on air‐assisted liquid–liquid microextraction followed by gas chromatography with flame ionization detection was developed for the extraction, preconcentration, and determination of five triazole pesticides (penconazole, hexaconazole, diniconazole, tebuconazole, and triticonazole) in edible oils. Initially, the oil samples were diluted with hexane and a few microliter of a less soluble organic solvent (extraction solvent) in hexane was added. To form fine and dispersed extraction solvent droplets, the mixture of oil sample solution and extraction solvent is repeatedly aspirated and dispersed with a syringe. Under the optimum extraction conditions, the method showed low limits of detection and quantification between 2.2–6.1 and 7.3–20 μg/L, respectively. Enrichment factors and extraction recoveries were in the ranges of 71–96 and 71–96%, respectively. The relative standard deviations for the extraction of 100 and 250 μg/L of each pesticide were less than 5% for intraday (n = 6) and interday (n = 3) precisions. Finally edible oil samples were successfully analyzed using the proposed method, and hexaconazole was found in grape seed oil.  相似文献   

8.
A simple, rapid, and sensitive method based on dispersive liquid–liquid microextraction combined with HPLC‐UV detection applied for the quantification of chlordiazepoxide in some real samples. The effect of different extraction conditions on the extraction efficiency of the chlordiazepoxide drug was investigated and optimized using central composite design as a conventional efficient tool. Optimum extraction condition values of variables were set as 210 μL chloroform, 1.8 mL methanol, 1.0 min extraction time, 5.0 min centrifugation at 5000 rpm min?1, neutral pH, 7.0% w/v NaCl. The separation was reached in less than 8.0 min using a C18 column using isocratic binary mobile phase (acetonitrile/water (60:40, v/v)) with flow rate of 1.0 mL min?1. The linear response (r2 > 0.998) was achieved in the range of 0.005–10 μg mL?1 with detection limit 0.0005 μg mL?1. The applicability of this method for simultaneous extraction and determination of chlordiazepoxide in four different matrices (water, urine, plasma, and chlordiazepoxide tablet) were investigated using standard addition method. Average recoveries at two spiking levels were over the range of 91.3–102.5% with RSD < 5.0% (n = 3). The obtained results show that dispersive liquid–liquid microextraction combined with HPLC‐UV is a fast and simple method for the determination of chlordiazepoxide in real samples.  相似文献   

9.
Solid‐phase extraction coupled with dispersive liquid–liquid microextraction was developed as an ultra‐preconcentration method for the determination of four organophosphorus pesticides (isocarbophos, parathion‐methyl, triazophos and fenitrothion) in water samples. The analytes considered in this study were rapidly extracted and concentrated from large volumes of aqueous solutions (100 mL) by solid‐phase extraction coupled with dispersive liquid–liquid microextraction and then analyzed using high performance liquid chromatography. Experimental variables including type and volume of elution solvent, volume and flow rate of sample solution, salt concentration, type and volume of extraction solvent and sample solution pH were investigated for the solid‐phase extraction coupled with dispersive liquid–liquid microextraction with these analytes, and the best results were obtained using methanol as eluent and ethylene chloride as extraction solvent. Under the optimal conditions, an exhaustive extraction for four analytes (recoveries >86.9%) and high enrichment factors were attained. The limits of detection were between 0.021 and 0.15 μg/L. The relative standard deviations for 0.5 μg/L of the pesticides in water were in the range of 1.9–6.8% (n = 5). The proposed strategy offered the advantages of simple operation, high enrichment factor and sensitivity and was successfully applied to the determination of four organophosphorus pesticides in water samples.  相似文献   

10.
Dispersive liquid–liquid microextraction coupled with high‐performance liquid chromatography‐ultraviolet detection as a fast and inexpensive technique was applied to the simultaneous extraction and determination of traces of three common herbicides, 2,4‐D, alachlor and atrazine, in aqueous samples. The critical experimental parameters, including type of the extraction and disperser solvents as well as their volumes, sample pH, salt addition, extraction time and centrifuging time, and speed were investigated and optimized. Under the optimum conditions, the calibration graphs found to be linear in the range of 0.3–200 μg/L with limits of detection in the range of 0.05–0.1 μg/L. The relative standard deviations were in the range of 4.5–6.2% (n = 7). The relative recoveries of well, tap, and river water samples which have been spiked with different levels of herbicides were 92.0–107.0, 82.0–104.0, and 82.0–86.0%, respectively.  相似文献   

11.
Two microextraction techniques – liquid phase microextraction based on solidification of a floating organic drop (LPME‐SFO) and dispersive liquid–liquid microextraction combined with a solidification of a floating organic drop (DLLME‐SFO) – are explored for benzene, toluene, ethylbenzene and o‐xylene sampling and preconcentration. The investigation covers the effects of extraction solvent type, extraction and disperser solvents' volume, and the extraction time. For both techniques 1‐undecanol containing n‐heptane as internal standard was used as an extracting solvent. For DLLME‐SFO acetone was used as a disperser solvent. The calibration curves for both techniques and for all the analytes were linear up to 10 μg/mL, correlation coefficients were in the range 0.997–0.998, enrichment factors were from 87 for benzene to 290 for o‐xylene, detection limits were from 0.31 and 0.35 μg/L for benzene to 0.15 and 0.10 μg/L for o‐xylene for LPME‐SFO and DLLME‐SFO, respectively. Repeatabilities of the results were acceptable with RSDs up to 12%. Being comparable with LPME‐SFO in the analytical characteristics, DLLME‐SFO is superior to LPME‐SFO in the extraction time. A possibility to apply the proposed techniques for volatile aromatic hydrocarbons determination in tap water and snow was demonstrated.  相似文献   

12.
A low‐cost and simple cooling‐assisted headspace liquid‐phase microextraction device for the extraction and determination of 2,6,6‐trimethyl‐1,3 cyclohexadiene‐1‐carboxaldehyde (safranal) in Saffron samples, using volatile organic solvents, was fabricated and evaluated. The main part of the cooling‐assisted headspace liquid‐phase microextraction system was a cooling capsule, with a Teflon microcup to hold the extracting organic solvent, which is able to directly cool down the extraction phase while the sample matrix is simultaneously heated. Different experimental factors such as type of organic extraction solvent, sample temperature, extraction solvent temperature, and extraction time were optimized. The optimal conditions were obtained as: extraction solvent, methanol (10 μL); extraction temperature, 60°C; extraction solvent temperature, 0°C; and extraction time, 20 min. Good linearity of the calibration curve (R2 = 0.995) was obtained in the concentration range of 0.01–50.0 μg/mL. The limit of detection was 0.001 μg/mL. The relative standard deviation for 1.0 μg/mL of safranal was 10.7% (n = 6). The proposed cooling‐assisted headspace liquid‐phase microextraction device was coupled (off‐line) to high‐performance liquid chromatography and used for the determination of safranal in Saffron samples. Reasonable agreement was observed between the results of the cooling‐assisted headspace liquid‐phase microextraction high‐performance liquid chromatography method and those obtained by a validated ultrasound‐assisted solvent extraction procedure.  相似文献   

13.
An ultrasound‐assisted dispersive liquid–liquid microextraction based on solidification of a floating organic drop method followed by high‐performance liquid chromatography was developed for the extraction, preconcentration, and determination of trace amounts of organophosphorus pesticides in rice samples. Variables affecting the performance of both steps were thoroughly investigated. Some effective parameters on extraction were studied and optimized. Under the optimum conditions, recoveries for rice sample are in the range of 58.0–66.0%. The calibration graphs are linear in the range of 4–800 μg/kg and, limits of detection and limits of quantification are in the range of 1.5–3 and 4.2–8.5 μg/kg, respectively. The relative standard deviation for 50.0 μg/kg of organophosphorus pesticides in rice sample are in the range of 4.4–5.1% (n = 5). The obtained results show that proposed method is a fast and simple method for the determination of pesticides in cereals.  相似文献   

14.
Dispersive liquid–liquid microextraction based on solidification of floating organic drop coupled with HPLC‐UV detection as a fast and inexpensive technique was applied to the simultaneous extraction and determination of traces of two common herbicides, alachlor and atrazine, in aqueous samples. The critical experimental parameters, including type of the extraction and disperser solvents as well as their volumes, sample pH, salt addition, and extraction time were investigated and optimized. Under the optimum conditions, the calibration graphs found to be linear in the range of 0.1–200 μg/L with LOD in the range of 0.02–0.05 μg/L. The RSDs were in the range of 4.2–5.3% (n = 5). The relative recoveries of well, tap, and river water samples which have been spiked with different levels of herbicides were 94.0–106.0, 99.0–105.0, and 88.5–97.0%, respectively.  相似文献   

15.
A simple homogenous liquid‐phase microextraction methodology applying octanoic acid as the extraction phase was introduced for determination of chlorobenzenes. In this approach, phase separation phenomenon occurred by changing pH of the solution. The extraction phase was isolated based on filtration of emulsion instead of centrifugation and it was introduced to the high‐performance liquid chromatography instrument as an on‐line procedure. This method was used for extraction and determination of five chlorobenzenes in different samples. Experimental design and response surface methodology were used for the optimization of various parameters influencing the extraction efficiency of the method. Under optimal conditions, chlorobenzenes were effectively extracted, and preconcentration factors of 255–294 were obtained. The calibration curves were investigated in the concentration range of 1–200 μg/L and good linearity was achieved with coefficient of determinations better than 0.997. Limits of detection of 0.1 and 0.3 μg/L and suitable precision with relative standard deviations better than 5.1% (n = 5) were attained. Finally, the proposed method was applied to determine the concentration of chlorobenzenes in different samples and acceptable recoveries were gained.  相似文献   

16.
The speciation of chromium(VI) and chromium(III) was investigated by using hollow fiber liquid‐phase microextraction based on two immiscible organic solvents followed by high performance liquid chromatography with ultraviolet detection. In this method, chromium(VI) and chromium(III) reacted with ammonium pyrrolidine dithiocarbamate to produce hydrophobic complexes. Subsequently, the complexes were first extracted into a thin layer of organic solvent (n‐dodecane) present in the pores of a porous hollow fiber, and then into a μL volume of an organic acceptor (methanol) located inside the lumen of the hollow fiber. Then, the extracting organic phase was injected into the separation column of the high‐performance liquid chromatograph for the analysis of both chromium species. Effective parameters on extraction were optimized using one‐variable‐at‐a‐time method and central composite design. Under optimized conditions, a linear range of 0.25–100 and 0.5–100 μg/L (R 2 > 0.998), the limits of detection of (S/N = 3) 0.08 and 0.1 μg/L and a preconcentration factor of 625 and 556 were achieved for chromium(VI) and chromium(III), respectively. The method was successfully applied to the speciation and determination of chromium species in different water samples and satisfactory results were obtained.  相似文献   

17.
In this work, a fast, easy, and efficient dispersive liquid–liquid microextraction method based on solidification of floating organic drop followed by high‐performance liquid chromatography with UV detection was developed for the separation/preconcentration and determination of the drug valsartan. Experimental design was applied for the optimization of the effective variables (such as volume of extracting and dispersing solvents, ionic strength, and pH) on the extraction efficiency of valsartan from urine samples. The optimized values were 250.0 μL ethanol, 65.0 μL 1‐dodecanol, 4.0% w/v NaCl, pH 3.8, 1.0 min extraction time, and 4.0 min centrifugation at 4000 rpm min?1. The linear response (r2 = 0.997) was obtained in the range of 0.013–10.0 μg mL?1 with a limit of detection of 4.0 ng mL?1 and relative standard deviations of less than 5.0 % (n = 6).  相似文献   

18.
An automated dispersive liquid–liquid microextraction integrated with gas chromatography and mass spectrometric procedure was developed for the determination of three N‐nitrosamines (N‐nitroso‐di‐n‐propylamine, N‐nitrosopiperidine, and N‐nitroso di‐n‐butylamine) in water samples. Response surface methodology was employed to optimize relevant extraction parameters including extraction time, dispersive solvent volume, water sample pH, sodium chloride concentration, and agitation (stirring) speed. The optimal dispersive liquid–liquid microextraction conditions were 28 min of extraction time, 33 μL of methanol as dispersive solvent, 722 rotations per minute of agitation speed, 23% w/v sodium chloride concentration, and pH of 10.5. Under these conditions, good linearity for the analytes in the range from 0.1 to 100 μg/L with coefficients of determination (r2) from 0.988 to 0.998 were obtained. The limits of detection based on a signal‐to‐noise ratio of 3 were between 5.7 and 124 ng/L with corresponding relative standard deviations from 3.4 to 5.9% (n = 4). The relative recoveries of N‐nitroso‐di‐n‐propylamine, N‐nitrosopiperidine, and N‐nitroso di‐n‐butylamine from spiked groundwater and tap water samples at concentrations of 2 μg/L of each analyte (mean ± standard deviation, n = 3) were (93.9 ± 8.7), (90.6 ± 10.7), and (103.7 ± 8.0)%, respectively. The method was applied to determine the N‐nitrosamines in water samples of different complexities, such as tap water, and groundwater, before and after treatment, in a local water treatment plant.  相似文献   

19.
A fully automated method for the determination of six phthalates in environmental water samples is described. It is based in the novel sample preparation concept of in‐syringe dispersive liquid–liquid microextraction, coupled as a front end to GC–MS, enabling the integration of the extraction steps and sample injection in an instrumental setup that is easy to operate. Dispersion was achieved by aspiration of the organic (extractant and disperser) and the aqueous phase into the syringe very rapidly. The denser‐than‐water organic droplets released in the extraction step, were accumulated at the head of the syringe, where the sedimented fraction was transferred to a rotary micro‐volume injection valve where finally was introduced by an air stream into the injector of the GC through a stainless‐steel tubing used as interface. Factors affecting the microextraction efficiency were optimized using multivariate optimization. Figures of merit of the proposed method were evaluated under optimal conditions, achieving a detection limit in the range of 0.03–0.10 μg/L, while the RSD% value was below 5% (n = 5). A good linearity (0.9956 ≥ r2 ≥ 0.9844) and a broad linear working range (0.5–120 μg/L) were obtained. The method exhibited enrichment factors and recoveries, ranging from 14.11–16.39 and 88–102%, respectively.  相似文献   

20.
The first dispersive liquid liquid microextraction scheme followed by liquid chromatography‐post column derivatization for the determination of the antiviral drug rimantadine in urine samples is demonstrated. The effect of the type and volume of organic extraction solvent, type and volume of disperser solvent, sample pH, ionic strength, extraction time, and centrifugation speed on the extraction efficiency were studied. Rimantadine and the internal standard (amantadine) were chromatographed using a reversed phase monolithic stationary phase with a mixture of equal volumes of methanol and phosphate buffer (pH = 3) as mobile phase. On‐line post‐column derivatization of the analyte was performed using a “two‐stream” manifold with o‐phthalaldehyde and N‐acetyl‐cysteine at alkaline medium. Under the optimized extraction conditions, the enrichment factor of rimantadine was 58. The linear range was 5–100 µg/L with correlation coefficient r of 0.9984 while the limit of detection achieved was 0.5 µg/L. The within‐day and between‐day precision for the tested concentration levels were less than 14.3% and the mean recoveries obtained from the spiked samples were ranged between 87.5 and 113.9%. The main advantages of the proposed method are the simplicity of operation, rapidity, low cost, and low limit of detection of the analyte.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号