首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The determination of 15 pyrethroids in soil and water samples was carried out by gas chromatography with mass spectrometry. Compounds were extracted from the soil samples (4 g) using solid–liquid extraction and then salting‐out assisted liquid–liquid extraction. The acetonitrile phase obtained (0.8 mL) was used as a dispersant solvent, to which 75 μL of chloroform was added as an extractant solvent, submitting the mixture to dispersive liquid–liquid microextraction. For the analysis of water samples (40 mL), magnetic solid‐phase extraction was performed using nanocomposites of magnetic nanoparticles and multiwalled carbon nanotubes as sorbent material (10 mg). The mixture was shaken for 45 min at room temperature before separation with a magnet and desorption with 3 mL of acetone using ultrasounds for 5 min. The solvent was evaporated and reconstituted with 100 μL acetonitrile before injection. Matrix‐matched calibration is recommended for quantification of soil samples, while water samples can be quantified by standards calibration. The limits of detection were in the range of 0.03–0.5 ng/g (soil) and 0.09–0.24 ng/mL (water), depending on the analyte. The analyzed environmental samples did not contain the studied pyrethroids, at least above the corresponding limits of detection.  相似文献   

2.
A new sol–gel hybrid methyltrimethoxysilane‐chloropropyltriethoxysilane was prepared as sorbent for solid‐phase extraction. The extraction efficiency of the prepared sol–gel hybrid methyltrimethoxysilane‐chloropropyltriethoxysilane was assessed by using three selected organophosphorus pesticides, namely, chlorpyrifos, profenofos, and malathion. Gas chromatography–mass spectrometry was used for detection of organophosphorus pesticides. Several vital parameters were optimized to identify the best extraction conditions. Under the optimum extraction conditions, solid‐phase extraction‐methyltrimethoxysilane‐chloropropyltriethoxysilane method showed good linearity range (0.05‐1 μg/mL) with coefficient of determination more than 0.995. The limits of detection obtained were in the range of 0.01–0.07 μg/mL and limits of quantification ranging from 0.03 to 0.21 μg/mL. The limits of detection obtained for the developed method were 2.3–6.5× lower than the limits of detection of commercial octadecyl silica sorbent. Real samples analysis was carried out by applying the developed method on red apple and purple grape samples. The developed method exhibited good recoveries (88.33–120.7%) with low relative standard deviations ranging from 1.6 to 3.3% compared to commercial octadecyl silica sorbent, which showed acceptable recoveries (70.3–100.2%) and relative standard deviations (6.3–8.8%). The solid‐phase extraction‐methyltrimethoxysilane‐chloropropyltriethoxysilane method is presented as an alternative extraction method for determination of organophosphorus pesticides.  相似文献   

3.
Pesticides, widely applied in agriculture, can produce a variety of transformation products and their continuous use causes deleterious effects to ecosystem. Efficient and sensitive analytical techniques for enrichment and analysis of pesticides samples are highly required. Compared with other extraction methods, solid‐phase micro extraction is a solvent free, cost effective, robust, versatile, and high throughput sample preparation technique, especially for the analysis of pesticides from complicated matrices. Coupling of solid‐phase micro extraction with gas chromatography and mass spectrometry and liquid chromatography–mass spectrometry has been extensively applied in pesticide analysis. On the other hand, in recent years, combination of fast separation using solid‐phase micro extraction and rapid detection using ambient mass spectrometry is providing highly efficient pesticide screening. This article summarizes the applications of solid‐phase micro extraction coupled to mass spectrometry for pesticides analysis.  相似文献   

4.
A method based on membrane‐protected micro‐solid‐phase extraction coupled with gas chromatography and mass spectrometry was developed for the determination of six ultraviolet filter compounds in various aqueous media. Multiwalled carbon nanotubes as the sorbent were encapsulated in a sealed polypropylene membrane packet and immersed in the sample to extract the analytes, and then dichloromethane was used for desorption purpose. The method was sensitive enough for quantitative analysis of the target analytes, with limits of quantification between 0.01 and 0.06 μg/L, and produced a linear response (R> 0.991) over the calibration range (0.05–6 μg/L). The obtained reproducibility was practically suitable with relative standard deviation values of less than 14% in pure water (spiked at 0.20/μg L) and less than 15% in real samples. The optimized method was applied for the analysis of real water samples with varying matrix complexity: tap, river, and dam water; geothermal spa; and sewage treatment plant effluent. Various levels and patterns of contamination were observed in the examined samples, while the sample from spa was the most contaminated, regarding the target analytes. Matrix spikes and matrix spike replicates were also analyzed to validate the technique for analysis of real aqueous samples, and satisfactory results were achieved.  相似文献   

5.
6.
A simple hydrophilic polyamide organic membrane protected micro‐solid‐phase extraction method with graphene oxide as the sorbent was developed for the enrichment of some parabens from water and vinegar samples prior to gas chromatography with mass spectrometry detection. The main experimental parameters affecting the extraction efficiencies, such as the type and amount of the sorbent, extraction time, stirring rate, salt addition, sample solution pH and desorption conditions, were investigated. Under the optimized experimental conditions, the method showed a good linearity in the range of 0.1–100.0 ng/mL for water samples and 0.5–100.0 ng/mL for vinegar samples, with the correlation coefficients varying from 0.9978 to 0.9997. The limits of detection (S/N = 3) of the method were in the range of 0.005–0.010 ng/mL for water samples and 0.01–0.05 ng/mL for vinegar samples, respectively. The recoveries of the method for the analytes at spiking levels of 5.0 and 70.0 ng/mL were between 84.6 and 106.4% with the relative standard deviations varying from 4.2 to 9.5%. The results indicated that the developed method could be a practical approach for the determination of paraben residues in water and vinegar samples.  相似文献   

7.
In this paper, solid‐phase extraction (SPE) in combination with dispersive liquid–liquid microextraction (DLLME) has been developed as a sample pretreatment method with high enrichment factors for the sensitive determination of amide herbicides in water samples. In SPE–DLLME, amide herbicides were adsorbed quantitatively from a large volume of aqueous samples (100 mL) onto a multiwalled carbon nanotube adsorbent (100 mg). After elution of the target compounds from the adsorbent with acetone, the DLLME technique was performed on the resulting solution. Finally, the analytes in the extraction solvent were determined by gas chromatography–mass spectrometry. Some important extraction parameters, such as flow rate of sample, breakthrough volume, sample pH, type and volume of the elution solvent, as well as salt addition, were studied and optimized in detail. Under optimum conditions, high enrichment factors ranging from 6593 to 7873 were achieved in less than 10 min. There was linearity over the range of 0.01–10 μg/L with relative standard deviations of 2.6–8.7%. The limits of detection ranged from 0.002 to 0.006 μg/L. The proposed method was used for the analysis of water samples, and satisfactory results were achieved.  相似文献   

8.
A sensitive technique to determinate naproxen in hair samples was developed using hollow‐fiber micro‐solid‐phase combined with fluorescence spectrophotometry. The incorporation of multi‐walled carbon nanotubes modified with a Keggin polyoxometalate into a silica matrix prepared by the sol–gel method was reported. In this research, the Keggin carbon nanotubes /silica composite was used in the pores and lumen of a hollow fiber as the hollow‐fiber micro‐solid‐phase extraction device. The device was used for the microextraction of the analyte from hair and water samples under the optimized conditions. An orthogonal array experimental design with an OA24 (46) matrix was employed to optimize the conditions. The effect of six factors influencing the extraction efficiency was investigated: pH, salt, volume of donor and desorption phase, extraction and desorption time. The effect of each factor was estimated using individual contributions as response functions in the screening process. Analysis of variance was employed for estimating the main significant factors and their contributions in the extraction. Calibration curve plot displayed linearity over a range of 0.2–10 ng/mL with detection limits of 0.072 and 0.08 ng/mL for hair and aqueous samples, respectively. The relative recoveries in the hair and aqueous matrices ranged from 103–95%. The relative standard deviation for fiber‐to‐fiber repeatability was 3.9%.  相似文献   

9.
This work presents a new extraction material, namely, Q‐100, based on hypercrosslinked magnetic particles, which was tested in dispersive solid‐phase extraction for a group of sweeteners from environmental samples. The hypercrosslinked Q‐100 magnetic particles had the advantage of suitable pore size distribution and high surface area, and showed good retention behavior toward sweeteners. Different dispersive solid‐phase extraction parameters such as amount of magnetic particles or extraction time were optimized. Under optimum conditions, Q‐100 showed suitable apparent recovery, ranging in the case of river water sample from 21 to 88% for all the sweeteners, except for alitame (12%). The validated method based on dispersive solid‐phase extraction using Q‐100 followed by liquid chromatography with tandem mass spectrometry provided good linearity and limits of quantification between 0.01 and 0.1 μg/L. The method was applied to analyze samples from river water and effluent wastewater, and four sweeteners (acesulfame, saccharin, cyclamate, and sucralose) were found in both types of sample.  相似文献   

10.
Core–shell magnetic carbon microspheres were synthesized by a simple hydrothermal method and used as a novel magnetic solid‐phase extraction adsorbent for the sensitive determination of polybrominated diphenyl ethers in environmental water samples. Gas chromatography with negative chemical ionization mass spectrometry was adopted for the detection. Box–Behnken design was used to investigate and optimize important magnetic solid‐phase extraction parameters through response surface methodology. Under the optimal conditions, low limits of detection (0.07–0.17 ng·L?1), a wide linear range (1–1000 ng·L?1), and good repeatability (0.80–4.58%) were achieved. The developed method was validated with several real water samples, and satisfactory results were obtained in the range of 72.8–97.9%. These results indicated that core–shell magnetic carbon microspheres have great potential as an adsorbent for the magnetic solid‐phase extraction of polybrominated diphenyl ethers at trace levels from environmental water samples.  相似文献   

11.
A selective and sensitive method was developed based on dispersive micro‐solid‐phase extraction for the extraction of hydroquinone, resorcinol, pyrocatechol and phenol from water samples prior to high‐performance liquid chromatography with UV detection. SiO2, SiO2@MPTES, and SiO2@MPTES@Au nanoparticles (MPTES = 3‐mercaptopropyltriethoxysilane) were synthesized and characterized by scanning electronic microscopy, thermogravimetric analysis, differential thermogravimetric analysis, and infrared spectroscopy. Variables such as the amount of sorbent (mg), pH and ionic strength of sample the solution, the volume of eluent solvent (μL), vortex and ultrasonic times (min) were investigated by Plackett–Burman design. The significant variables optimized by a Box–Behnken design were combined by a desirability function. Under optimized conditions, the calibration graphs of phenol and dihydroxybenzenes were linear in a concentration range of 1–500 μg/L, and with correlation coefficients more than 0.995. The limits of detection for hydroquinone, resorcinol, pyrocatechol, and phenol were 0.54, 0.58, 0.46, and 1.24 μg/L, and the limits of quantification were 1.81, 1.93, 1.54, and 4.23 μg/L, respectively. This procedure was successfully employed to determine target analytes in spiked water samples; the relative mean recoveries ranged from 93.5 to 98.9%.  相似文献   

12.
A simple, rapid, and novel method has been developed and validated for determination of seven indicator polychlorinated biphenyls in water samples by gas chromatography with electron capture detection. 1 L of water samples containing 30 g of anhydrous sodium sulfate was first liquid–liquid extracted with an automated Jipad‐6XB vertical oscillator using n‐hexane/dichloromethane (1:1, v/v). The concentrated extract was cleaned up by dispersive solid‐phase extraction with 100 mg of primary secondary amine as sorbent material. The linearity of this method ranged from 1.25 to 100 μg/L, with regression coefficients ranging between 0.9994 and 0.9999. The limits of detection were in the ng/L level, ranging between 0.2 and 0.3 ng/L. The recoveries of seven spiked polychlorinated biphenyls with external calibration method at different concentration levels in tap water, lake water, and sea water were in the ranges of 85–112, 76–116, and 72–108%, respectively, and with relative standard deviations of 3.3–4.5, 3.4–5.6, and 3.1–4.8% (n =  5), respectively. The performance of the proposed method was compared with traditional liquid–liquid extraction and solid‐phase extraction clean‐up methods, and comparable efficiencies were obtained. It is concluded that this method can be successfully applied for the determination of polychlorinated biphenyls in different water samples.  相似文献   

13.
Phenoxy acid herbicides are widely used herbicides that play an important role in improving the yield and quality of crops. However, some research has shown that this kind of herbicide is poisonous to human and animals. In this study, a rapid and sensitive method was developed for the detection of seven phenoxy acid herbicides in water samples based on magnetic solid‐phase extraction followed by liquid chromatography and tandem mass spectrometry. Magnetic amino‐functionalized multiwalled carbon nanotubes were prepared by mixing bare magnetic Fe3O4 nanoparticles with commercial amino‐functionalized multiwalled carbon nanotubes in water. Then the amino‐functionalized multiwalled carbon nanotubes were used to enrich phenoxy acid herbicides from water samples based on hydrophobic and ionic interactions. The effects of experimental variables on the extraction efficiency have been studied in detail. Under the optimized conditions, the method validation was performed. Good linearities for seven phenoxy acid herbicides were obtained with squared regression coefficients ranging from 0.9971 to 0.9989. The limits of detection ranged from 0.01 to 0.02 μg/L. The method recoveries of seven phenoxy acid herbicides spiked at three concentration levels in a blank sample were from 92.3 to 103.2%, with inter‐ and intraday relative standard deviations less than 12.6%.  相似文献   

14.
Magnetic Fe3O4/SiO2 composite core–shell nanoparticles were synthesized, characterized, and applied for the surfactant‐assisted solid‐phase extraction of five benzodiazepines diazepam, oxazepam, clonazepam, alprazolam, and midazolam, from human hair and wastewater samples before high‐performance liquid chromatography with diode array detection. The nanocomposite was synthesized in two steps. First, Fe3O4 nanoparticles were prepared by the chemical co‐precipitation method of Fe(III) and Fe(II) as reaction substrates and NH3/H2O as precipitant. Second, the surface of Fe3O4 nanoparticles was modified with shell silica by Stober method using tetraethylorthosilicate. The Fe3O4/SiO2 composite were characterized by X‐ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and vibrating sample magnetometry. To enhance their adsorptive tendency toward benzodiazepines, cetyltrimethylammonium bromide was added, which was adsorbed on the surface of the Fe3O4/SiO2 nanoparticles and formed mixed hemimicelles. The main parameters affecting the efficiency of the method were thoroughly investigated. Under optimum conditions, the calibration curves were linear in the range of 0.10–15 μgmL?1. The relative standard deviations ranged from 2.73 to 7.07%. The correlation coefficients varied from 0.9930 to 0.9996.  相似文献   

15.
A new facile magnetic micro‐solid‐phase extraction coupled to gas chromatography and mass spectrometry detection was developed for the extraction and determination of selected antidepressant drugs in biological fluids using magnetite‐MCM‐41 as adsorbent. The synthesized sorbent was characterized by several spectroscopic techniques. The maximum extraction efficiency for extraction of 500 μg/L antidepressant drugs from aqueous solution was obtained with 15 mg of magnetite‐MCM‐41 at pH 12. The analyte was desorbed using 100 μL of acetonitrile prior to gas chromatography determination. This method was rapid in which the adsorption procedure was completed in 60 s. Under the optimized conditions using 15 mL of antidepressant drugs sample, the calibration curve showed good linearity in the range of 0.05–500 μg/L (r 2 = 0.996–0.999). Good limits of detection (0.008–0.010 μg/L) were obtained for the analytes with good relative standard deviations of <8.0% (n  = 5) for the determination of 0.1, 5.0, and 500.0 μg/L of antidepressant drugs. This method was successfully applied to the determination of amitriptyline and chlorpromazine in plasma and urine samples. The recoveries of spiked plasma and urine samples were in the range of 86.1–115.4%. Results indicate that magnetite micro‐solid‐phase extraction with gas chromatography and mass spectrometry is a convenient, fast, and economical method for the extraction and determination of amitriptyline and chlorpromazine in biological samples.  相似文献   

16.
This study describes the use of diatomaceous earth during solid‐phase extraction as an efficient sorbent for separation and concentration of dodecanol and ethoxylated dodecanol containing 1–9 ethoxyl groups. The efficiency of different eluents was evaluated for model samples which allowed to select methanol and chloroform for tests with river water samples. During model experiments, it was observed that the recovery rates of specific compounds in the studied mixture were influenced by the character of the solvent used for desorption. Hydrophobic compounds, such as dodecanol and ethoxylated dodecanol with 1–3 ethoxyl groups, were eluted by chloroform with 100% efficiency. In case of the remaining compounds, which were more hydrophilic, a 97% recovery rate was achieved during elution with methanol. Such dependencies were not observed in case of river water samples, as the results obtained for both studied sorbent‐eluent systems were comparable. In both variants the recovery of dodecanol and ethoxylated dodecanol containing 1–9 ethoxyl groups ranged from 33 to 99%.  相似文献   

17.
We describe a highly sensitive micro‐solid‐phase extraction method for the pre‐concentration of six phthalate esters utilizing a TiO2 nanotube array coupled to high‐performance liquid chromatography with a variable‐wavelength ultraviolet visible detector. The selected phthalate esters included dimethyl phthalate, diethyl phthalate, dibutyl phthalate, butyl benzyl phthalate, bis(2‐ethylhexyl)phthalate and dioctyl phthalate. The factors that would affect the enrichment, such as desorption solvent, sample pH, salting‐out effect, extraction time and desorption time, were optimized. Under the optimum conditions, the linear range of the proposed method was 0.3–200 μg/L. The limits of detection were 0.04–0.2 μg/L (S/N = 3). The proposed method was successfully applied to the determination of six phthalate esters in water samples and satisfied spiked recoveries were achieved. These results indicated that the proposed method was appropriate for the determination of trace phthalate esters in environmental water samples.  相似文献   

18.
Graphene has great potentials for the use in sample preparation due to its ultra high specific surface area, superior chemical stability, and excellent thermal stability. In our work, a novel graphene‐based SPE disk was developed for separation and preconcentration of trace polycyclic aromatic hydrocarbons from environmental water samples. Based on the strong π–π stacking interaction between the analytes and graphene, the analytes extracted by graphene were eluted by cyclohexane and then determined by GC‐MS. Under the optimized conditions, high flow rate (30 mL/min) and sensitivity (0.84–13 ng/L) were achieved. The proposed method was successfully applied to the analysis of real environmental water samples with recoveries ranging from 72.8 to 106.2%. Furthermore, the property of anticlogging and reusability was also improved. This work reveals great potentials of graphene‐based SPE disk in environmental analytical.  相似文献   

19.
In this article, the use of magnetically separable sorbent polyaniline/silica‐coated nickel nanoparticles is evaluated under a dispersive micro‐solid‐phase extraction approach for the extraction of phenolic compounds from water samples. The sorbent was prepared by in situ chemical polymerization of aniline on the surface of silica‐modified nickel nanoparticles and was characterized by Fourier transform infrared spectroscopy, transmission electron microscopy, X‐ray powder diffraction, scanning electron microscopy, energy‐dispersive X‐ray spectrometry, and vibrating sample magnetometry. Effective variables such as amount of sorbent (milligrams), pH and ionic strength of sample solution, volume of eluent solvent (microliters), vortex, and ultrasonic times (minutes) were investigated by fractional factorial design. The significant variables optimized by a Box–Behnken design were combined by a desirability function. Under the optimized conditions, the calibration graphs of analytes were linear in a concentration range of 0.02–100 μg/mL, and with correlation coefficients more than 0.999. The limits of detection and quantification were in the ranges of 10–23 and 33–77 μg/L, respectively. This procedure was successfully employed in the determination of target analytes in spiked water samples; the relative mean recoveries ranged from 96 to 105%.  相似文献   

20.
In this work, a novel, rapid, and simple analytical method was proposed for the detection of parabens in milk sample by gas chromatography coupled with mass spectrometry. At the same time, milk sample was pretreated by magnetic solid phase extraction, which detected up to five parabens. A series of important parameters of magnetic solid phase extraction were investigated and optimized, such as pH value of loading buffer, amount of material, adsorption time, ionic strength, eluting solvents, and eluting time. Under the optimized conditions, the corresponding values were more than 0.9991, limits of detection and the limit of quantification were 0.1 and 0.5 ng/mL, respectively. In addition, the recoveries were achieved in range of 95–105%, the liner range were within 0.1–600 ng/mL, and the relative standard deviations were even lower than 5%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号