首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A sol–gel coating technique was applied for the preparation of a solid‐phase microextraction fiber by coating the metal–organic framework UiO‐67 onto a stainless‐steel wire. The prepared fiber was explored for the headspace solid‐phase microextraction of five nitrobenzene compounds from water samples before gas chromatography with mass spectrometric detection. The effects of the extraction temperature, extraction time, sample solution volume, salt addition, and desorption conditions on the extraction efficiency were optimized. Under the optimal conditions, the linearity was observed in the range of 0.015–12.0 μg/L for the compounds in water samples, with the correlation coefficients (r) of 0.9945–0.9987. The limits of detection of the method were 5.0–10.0 ng/L, and the recoveries of the analytes from spiked water samples for the method were in the range of 74.0–102.0%. The precision for the measurements, expressed as the relative standard deviation, was less than 11.9%.  相似文献   

2.
A new facile magnetic micro‐solid‐phase extraction coupled to gas chromatography and mass spectrometry detection was developed for the extraction and determination of selected antidepressant drugs in biological fluids using magnetite‐MCM‐41 as adsorbent. The synthesized sorbent was characterized by several spectroscopic techniques. The maximum extraction efficiency for extraction of 500 μg/L antidepressant drugs from aqueous solution was obtained with 15 mg of magnetite‐MCM‐41 at pH 12. The analyte was desorbed using 100 μL of acetonitrile prior to gas chromatography determination. This method was rapid in which the adsorption procedure was completed in 60 s. Under the optimized conditions using 15 mL of antidepressant drugs sample, the calibration curve showed good linearity in the range of 0.05–500 μg/L (r 2 = 0.996–0.999). Good limits of detection (0.008–0.010 μg/L) were obtained for the analytes with good relative standard deviations of <8.0% (n  = 5) for the determination of 0.1, 5.0, and 500.0 μg/L of antidepressant drugs. This method was successfully applied to the determination of amitriptyline and chlorpromazine in plasma and urine samples. The recoveries of spiked plasma and urine samples were in the range of 86.1–115.4%. Results indicate that magnetite micro‐solid‐phase extraction with gas chromatography and mass spectrometry is a convenient, fast, and economical method for the extraction and determination of amitriptyline and chlorpromazine in biological samples.  相似文献   

3.
In this study, a simple and rapid extraction method based on the application of polypyrrole‐coated Fe3O4 nanoparticles as a magnetic solid‐phase extraction sorbent was successfully developed for the extraction and preconcentration of trace amounts of formaldehyde after derivatization with 2,4‐dinitrophenylhydrazine. The analyses were performed by high‐performance liquid chromatography followed by UV detection. Several variables affecting the extraction efficiency of the formaldehyde, i.e., sample pH, amount of sorbent, salt concentration, extraction time and desorption conditions were investigated and optimized. The best working conditions were as follows: sample pH, 5; amount of sorbent, 40 mg; NaCl concentration, 20% w/v; sample volume, 20 mL; extraction time, 12 min; and 100 μL of methanol for desorption of the formaldehyde within 3 min. Under the optimal conditions, the performance of the proposed method was studied in terms of linear dynamic range (10–500 μg/L), correlation coefficient (R2 ≥ 0.998), precision (RSD% ≤ 5.5) and limit of detection (4 μg/L). Finally, the developed method was successfully applied for extraction and determination of formaldehyde in tap, rain and tomato water samples, and satisfactory results were obtained.  相似文献   

4.
Dispersive liquid–liquid microextraction coupled with high‐performance liquid chromatography‐ultraviolet detection as a fast and inexpensive technique was applied to the simultaneous extraction and determination of traces of three common herbicides, 2,4‐D, alachlor and atrazine, in aqueous samples. The critical experimental parameters, including type of the extraction and disperser solvents as well as their volumes, sample pH, salt addition, extraction time and centrifuging time, and speed were investigated and optimized. Under the optimum conditions, the calibration graphs found to be linear in the range of 0.3–200 μg/L with limits of detection in the range of 0.05–0.1 μg/L. The relative standard deviations were in the range of 4.5–6.2% (n = 7). The relative recoveries of well, tap, and river water samples which have been spiked with different levels of herbicides were 92.0–107.0, 82.0–104.0, and 82.0–86.0%, respectively.  相似文献   

5.
A mesoporous carbon was fabricated using MCM‐41 as a template and sucrose as a carbon source. The carbon material was coated on stainless‐steel wires by using the sol–gel technique. The prepared solid‐phase microextraction fiber was used for the extraction of five volatile aromatic compounds (chlorobenzene, ethylbenzene, o‐xylene, bromobenzene, and 4‐chlorotoluene) from tea beverage samples (red tea and green tea) prior to gas chromatography with mass spectrometric detection. The main experimental parameters affecting the extraction of the volatile aromatic compounds by the fiber, including the extraction time, sample volume, extraction temperature, salt addition, and desorption conditions, were investigated. The linearity was observed in the range from 0.1 to 10.0 μg/L with the correlation coefficients (r) ranging from 0.9923 to 0.9982 and the limits of detection were less than 10.0 ng/L. The recoveries of the volatile aromatic compounds by the method from tea beverage samples at spiking levels of 1.0 and 10.0 μg/L ranged from 73.1 to 99.1%.  相似文献   

6.
Ionic liquids immobilized on magnetic nanoparticles were prepared by an efficient microwave‐assisted synthesis method, and the properties of the ionic liquids were tuned based on the aromatic functional modification of its anion through a simple metathesis reaction. The novel as‐synthesized magnetic materials were characterized by various instrumental techniques. The magnetic nanoparticles have been utilized as adsorbents for the extraction of four sulfonylurea herbicides in tea samples, in combination with high‐performance liquid chromatography analysis. Significant extraction parameters, including type and volume of desorption solvent, extraction time, amount of adsorbent, and ionic strength were investigated. Under the optimum conditions, good linearity was obtained in the concentration range of 1–150 μg/L for metsulfuron‐methyl and bensulfuron‐methyl, and 3–150 μg/L for sulfometuron‐methyl and chlorimuron‐ethyl, with correlation coefficients R2 > 0.9987. Low limits of detection were obtained ranging from 0.13 to 0.81 μg/L. The relative standard deviations were 1.8–3.9%. Comparisons of extraction efficiency with conventional solid‐phase extraction equipped with a commercial C18 cartridge were performed. Results indicated that magnetic solid‐phase extraction is simple, time‐saving, efficient and inexpensive with the reusability of adsorbents. The proposed method has been successfully used to determine sulfonylurea herbicides from tea samples with satisfactory recoveries of 80.5–104.2%.  相似文献   

7.
In this work, a porous carbon derived from amino‐functionalized material of Institut Lavoisier (C‐NH2‐MIL‐125) was prepared and coated onto a stainless‐steel wire through sol–gel technique. The coated fiber was used for the solid‐phase microextraction of trace levels of phthalate esters (diallyl phthalate, di‐iso‐butyl ortho‐phthalate, di‐n‐butyl ortho‐phthalate, benzyl‐n‐butyl ortho‐phthalate, and bis(2‐ethylhexy) ortho‐phthalate) from tea beverage samples before gas chromatography with mass spectrometric analysis. Several experimental parameters that could influence the extraction efficiency such as extraction time, extraction temperature, sample pH, sample salinity, stirring rate, desorption temperature and desorption time, were investigated. Under the optimal conditions, the linearity existed in the range of 0.05–30.00 μg/L for green jasmine tea beverage samples, and 0.10–30.00 μg/L for honey jasmine tea beverage samples, with the correlation coefficients (r) ranging from 0.9939 to 0.9981. The limits of detection of the analytes for the method were 2.0–3.0 ng/L for green jasmine tea beverage sample, and 4.0–5.0 ng/L for honey jasmine tea beverage sample, depending on the compounds. The recoveries of the analytes for the spiked samples were in the range of 82.0–106.0%, and the precision, expressed as the relative standard deviations, was less than 11.1%.  相似文献   

8.
A new mesoporous silica based on the sol–gel material cyanopropyltriethoxysilane (CNPrTEOS) was successfully synthesized by the hydrolysis and condensation of CNPrTEOS in the presence of ammonium solution as catalyst and methanol as solvent. It was used as a solid‐phase extraction sorbent for the simultaneous extraction of three organophosphorus pesticides, namely, polar dicrotophos and non‐polar diazinon and chlorpyrifos. Analysis was performed using high‐performance liquid chromatography with UV detection. CNPrTEOS was characterized by FTIR spectroscopy, field‐emission scanning electron microscopy and nitrogen gas adsorption. The surface area and average pore diameter of the optimum sol–gel CNPrTEOS are 379 m2/g and 4.7 nm (mesoporous), respectively. The proposed solid‐phase extraction based on CNPrTEOS exhibited good linearity in the range of 0.8–100 μg/L, satisfactory precision (1.15–3.82%), high enrichment factor (800) and low limit of detection (0.072–0.091 μg/L). The limits of detection obtained using the proposed solid‐phase extraction method are well below the maximum residue limit set by European Union and are also lower (13.6–48.5×) than that obtained by using a commercial CN‐SPE cartridge (0.98–4.41 μg/L). The new mesoporous sol–gel CNPrTEOS showed promising alternative as SPE sorbent material for the simultaneous extraction of polar and non‐polar organophosphorus pesticides.  相似文献   

9.
A novel low‐density solvent‐based vortex‐assisted surfactant‐enhanced‐emulsification liquid–liquid microextraction with the solidification of floating organic droplet method coupled with high‐performance liquid chromatography was developed for the determination of 3,5,6‐trichloro‐2‐pyridinol, phoxim and chlorpyrifos‐methyl in water samples. In this method, the addition of a surfactant could enhance the speed of the mass transfer from the sample solution into the extraction solvent. The extraction solvent could be dispersed into the aqueous by the vortex process. The main parameters affecting the extraction efficiency were investigated and the optimum conditions were established as follows: 80 μL 1‐undecanol as extraction solvent, 0.2 mmol/L of Triton X‐114 selected as the surfactant, the vortex time was fixed at 60 s with the vortex agitator set at 3000 rpm, the concentration of acetic acid in sample solution was 0.4% v/v and 1.0 g addition of NaCl. Under the optimum conditions, the enrichment factors were from 172 to 186 for the three analytes. The linear ranges were from 0.5 to 500 μg/L with a coefficient of determination (r2) of between 0.9991 and 0.9995. Limits of detections were varied between 0.05 and 0.12 μg/L. The relative standard deviations (n = 6) ranged from 0.26 to 2.62%.  相似文献   

10.
A high‐performance metal oxide polymer magnetite/polyethylene glycol nanocomposite was prepared and coated in situ on the surface of the optical fiber by sol–gel technology. The magnetite nanoparticles as nanofillers were synthesized by a coprecipitation method and bonded with polyethylene glycol as a polymer. The chemically bonded coating was evaluated for the headspace solid–phase microextraction of some environmentally important volatile organic compounds from aqueous samples in combination with gas chromatography and mass spectrometry. The prepared fiber was characterized by scanning electron microscopy and Fourier transform infrared spectroscopy. The mass ratio of nanofiller and polymer on the coating extraction efficiency, morphology, and stability were investigated. The parameters affecting the extraction efficiency, including the extraction time and temperature, the ionic strength, desorption temperature, and time were optimized. The sol–gelized fiber showed excellent chemical stability and longer lifespan. It also exhibited high extraction efficiency compared to the two types of commercial fibers. For volatile organic compounds analysis, the new fiber showed low detection limits (0.008–0.063 ng/L) and wide linearity (0.001–450 × 104 ng/L) under the optimized conditions. The repeatability (interday and intraday) and reproducibility were 4.13–10.08 and 5.98–11.61%, and 7.35–14.79%, respectively (n = 5). For real sample analysis, three types of water samples (ground, surface, and tap water) were studied.  相似文献   

11.
A SBA‐15/polyaniline para‐toluenesulfonic acid nanocomposite supported micro‐solid‐phase extraction procedure has been developed for the extraction of parabens (methylparaben, ethylparaben, and propylparaben) from wastewater and cosmetic products. The variables of interest in the extraction process were pH of sample, sample and eluent volumes, sorbent amount, salting‐out effect, extraction and desorption time, and stirring rate. A Plackett–Burman design was performed for the screening of variables in order to determine the significant variables affecting the extraction efficiency. Then, the significant factors were optimized by using a central composite design. The optimum experimental conditions found at 50 mL sample solution, extraction and desorption times of 40 and 20 min, respectively, 500 μL of 3% v/v acetic acid in methanol as eluent, 0.01 M salt addition, and 10 mg of the sorbent. Under the optimum conditions, the developed method provided detection limits in the range of 0.08–0.4 ng/mL with good repeatability (RSD% < 7) and linearity (r2 = 0.997–0.999) for the three parabens. Finally, this fast and efficient method was employed for the determination of target analytes in cosmetic products and wastewater, and satisfactory results were obtained.  相似文献   

12.
A novel and simple supported ionic‐liquid‐based solid‐phase extraction method for the determination of triazine herbicides in rice was developed. Glass slides were functionalized by an ionic liquid, 1‐carboxyethyl‐3‐methylimidazolium chloride, and were used for the simultaneous extraction of seven triazine herbicides in rice samples. The effects of the type of extraction solvent, the extraction time, the type and volume of loading solvent, and the type of eluting solvent on the extraction efficiency were investigated and optimized. Under the optimum operation conditions, the limits of detection for seven triazine herbicides in rice samples obtained by high‐performance liquid chromatography were 3.16–5.42 ng/g, which were lower than the maximum residue levels established by various organizations. The linear correlation coefficients were higher than 0.9975 in the concentration range of 0.015–1.08 μg/g for the seven triazine herbicides. The recoveries of the seven triazine herbicides at the two concentration levels of 0.15 and 0.45 μg/g are between 82.47 and 104.21%, with relative standard deviations of 0.69–9.19%. The intra‐ and inter‐day (n = 5) precisions for all triazine herbicides at the spiked level of 0.30 μg/g were 1.72–11.71%.  相似文献   

13.
This paper describes the use of graphene oxide/silica modified with nitro‐substituted tris(indolyl)methane as a solid‐phase extraction sorbent for the determination of organic acids. The resultant graphene oxide/silica modified with nitro‐substituted tris(indolyl)methane was characterized by FTIR spectroscopy and adsorption experiments. Solid‐phase extraction parameters such as sorbent type, sample solution pH, sample loading rate, eluent salt concentration, eluent methanol concentration, elution rate, sample loading, and elution volume were optimized. The method showed good precision, accuracy, sensitivity, and linear response for organic acids analysis over a concentration range of 1–100 μg/L for benzoic acid, p‐methoxybenzoic acid, and salicylic acid and 5–100 μg/L for the remaining organic acids (cinnamic acid, p‐chlorobenzoic acid, and p‐bromobenzoic acid) with coefficients of determination (r2) of higher than 0.9957. Limits of detection from 0.50 to 1.0 μg/L for six organic acids were achieved. The developed method was successfully applied to determine organic acids in real samples.  相似文献   

14.
A headspace solid‐phase microextraction method coupled to GC–MS was successfully developed for the trace determination of formaldehyde in veterinary bacterial and human vaccines, and diphtheria–tetanus antigen. The formaldehyde was derivatized by means of the Hantzsch reaction prior to extraction and subsequent determination. Three different types of solid‐phase microextraction fibers, polar, and nonpolar poly(dimethylsiloxane) and polyethylene glycol were prepared by using a sol–gel technique. The effects of different parameters such as type of fiber coating, extraction time and temperature, desorption conditions, agitation rate, and salt effect were investigated. Under the optimized conditions, the detection limit of the method was 979 ng/L using the selected ion‐monitoring mode. The interday and intraday precisions of the developed method under the optimized conditions were below 13%, and the method shows linearity in the range of 1.75–800 μg/L with a correlation coefficient of 0.9963. The optimized method was applied to the determination of formaldehyde from some biological products. The results were satisfactory compared to the standard method.  相似文献   

15.
We have prepared a solid phase for the extraction of chlorobenzenes (CBs) by coating magnetic (Fe3O4) nanoparticles with silica via a sol‐gel process using a mixture of tetraethoxysilane and triethoxyphenylsilane. The nanoparticles were characterized by SEM, energy‐dispersive spectroscopy, and X‐ray diffractometry. The nanoparticles were used for the extraction of 1,4‐dichlorobenzene (1,4‐DCB), 1,2,3‐trichlorobenzene (1,2,3‐TCB), 1,2,4‐trichlorobenzene (1,2,4‐TCB), and 1,2,3,4‐tetrachlorobenzene (1,2,3,4‐TeCB) from water, followed by their determination by GC‐electron capture detection. Under optimal conditions, enrichment factors ranging from 220 to 360 were obtained. All determination coefficients (r2) are >0.99, and linear response is found in range 0.025–1.5 μg/L (at the lower end), and 6–120 μg/L (at the higher end). Detection limits are 6, 10, 11, and 500 ng/L for 1,2,3,4‐TeCB, 1,2,4‐TCB, 1,2,3‐TCB, and 1,4‐DCB, respectively. All RSDs are <6% (for n = 5). The method was successfully applied to the determination of CBs in environmental water samples.  相似文献   

16.
A method based on direct immersion solid‐phase microextraction (DI‐SPME) coupled with high performance liquid chromatography combined with post‐column photochemically induced fluorimetry derivatization and fluorescence detection (HPLC‐PIF‐FD) was developed to extract three pyrethroid insecticides, i.e. cyfluthrin, cypermethrin, and flumethrin from water samples. A sol‐gel based coating fiber using 3‐(trimethoxysilyl propyl) amine as precursor was prepared and used for the extraction of the pyrethroids from groundwater samples. A post‐column photochemical reactor was designed and constructed for the derivatization of these environmentally important pollutants to increase their fluorescence sensitivity and determination in HPLC. The parameters affecting extraction process (extraction time and temperature, pH, salt addition, and co‐solvent) and desorption step (solvent, desorption time, and temperature) of the analytes from the sol‐gel‐based fiber, along with photochemical reaction conditions were investigated. The developed method proved to be relatively rapid, simple, and easy and offers high sensitivity and reproducibility. Linear dynamic ranges (LDR) for these insecticides were ranged between 0.25 to 50 μg/L. The regression coefficients were satisfactory (R2 > 0.984) for these pyrethroids. The limits of detection and limits of quantification varied between 0.09 and 0.35 μg/L and 0.25 and 1.00 μg/L, respectively. Relative standard deviation RSDs values varied between 4.41% and 6.20%. Relative recoveries obtained from analysis of Jajroud river water sample ranged between 94% and 104%.  相似文献   

17.
In this work, an ampholine‐functionalized hybrid organic–inorganic silica sorbent was successfully used to extract melamine from a milk formula sample by a hydrophilic interaction solid‐phase extraction protocol. Primary factors affecting the extraction efficiency of the material such as extraction solvent, elution solvent, sample loading volume, and elution volume have been thoroughly optimized. Under the optimized hydrophilic solid‐phase extraction conditions, the recoveries of melamine spiked in milk formula samples ranged from 86.2 to 101.8% with relative standard deviations of 4.1–9.4% (n = 3). The limit of detection (S/N = 3) was 0.32 μg/g. The adsorption capacity toward melamine was 30 μg of melamine per grams of sorbent. Due to its simplicity, rapidity and cost effectiveness, the newly developed hydrophilic solid‐phase extraction method should provide a promising tool for daily monitoring of doped melamine in milk formula.  相似文献   

18.
In this study, a new covalent organic framework, consisting of tetra(4‐aminophenyl)porphyrin and tris(4‐formyl phenyl)amine, was layer‐by‐layer immobilized on stainless‐steel wire as a coating for microextraction. The fabrication process was easy and controllable under mild conditions. The as‐grown fiber was applied to extract polycyclic aromatic hydrocarbons in aqueous solution via head‐space solid‐phase microextraction. Furthermore, it was analyzed by gas chromatography with a flame ionization detector. A wide linear range (0.1–50 µg/L), low limits of detection (0.006–0.024 µg/L, signal‐to‐noise ratio = 3), good repeatability (intra‐fiber, n = 6, 3.1–8.50%), and reproducibility (fiber to fiber; n = 3, 5.79–9.98%), expressed as relative standard deviations, demonstrate the applicability of the newly developed coating. This new material was successfully utilized in real sample extraction with a satisfactory result. Potential parameters affecting the extraction efficiency, including extraction temperature and extraction time, salt concentration, agitation speed, sample volume, desorption temperature, and time, were also optimized and discussed.  相似文献   

19.
In this work, a graphene composite was coated onto etched stainless‐steel wire through a sol–gel technique and it was used as a solid‐phase microextraction (SPME) fiber. The prepared fiber was characterized by SEM, which revealed that the fiber had a highly porous structure. The application of the fiber was evaluated through the headspace SPME of five halogenated aromatic hydrocarbons (chlorobenzene, bromobenzene, 1,3‐dichlorobenzene, 1,2‐dichlorobenzene, and 1,2,4‐trichlorobenzene) in water samples followed by GC with flame ionization detection. The main factors influencing the extraction efficiency, including headspace volume, extraction time, extraction temperature, stirring rate, ionic strength of sample solution, and desorption conditions, were studied and optimized. Under the optimum conditions, the linearity of the method ranged from 2.5 to 800.0 μg/L for 1,2,4‐trichlorobenzene and from 2.5 to 500.0 μg/L for chlorobenzene, bromobenzene, 1,3‐dichlorobenzene, and 1,2‐dichlorobenzene, with the correlation coefficients (r) ranging from 0.9962 to 0.9980, respectively. The LODs (S/N = 3) of the method for the analytes were in the range between 0.5 and 1.0 μg/L. The recoveries of the method for the analytes obtained for the spiked water samples at 50.0 and 250.0 μg/L were from 76.0 to 104.0%.  相似文献   

20.
Polypyrrole‐magnetite dispersive micro‐solid‐phase extraction method combined with ultraviolet‐visible spectrophotometry was developed for the determination of selected cationic dyes in textile wastewater. Polypyrrole‐magnetite was used as adsorbent due to its thermal stability, magnetic properties, and ability to adsorb Rhodamine 6G and crystal violet. Dispersive micro‐solid‐phase extraction parameters were optimized, including sample pH, adsorbent amount, extraction time, and desorption solvent. The optimum polypyrrole‐magnetite dispersive micro‐solid phase‐extraction conditions were sample pH 8, 60 mg polypyrrole‐magnetite adsorbent, 5 min of extraction time, and acetonitrile as the desorption solvent. Under the optimized conditions, the polypyrrole‐magnetite dispersive micro‐solid‐phase extraction with ultraviolet‐visible method showed good linearity in the range of 0.05–7 mg/L (R 2 > 0.9980). The method also showed a good limit of detection for the dyes (0.05 mg/L) and good analyte recoveries (97.4–111.3%) with relative standard deviations < 10%. The method was successfully applied to the analysis of dyes in textile wastewater samples where the concentration found was 1.03 mg (RSD ±7.9%) and 1.13 mg/L (RSD ± 4.6%) for Rhodamine 6G and crystal violet, respectively. It can be concluded that this method can be adopted for the rapid extraction and determination of dyes at trace concentration levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号