首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple in situ solvent formation microextraction method based on use of ionic liquid (IL) as an extractant solvent and sodium hexafluorophosphate (NaPF6) as an ion‐pairing agent was proposed for the concentration of trace levels of lead. In this method lead was complexed with N‐phenylbenzo‐hydroxamic acid (PBHA) and extracted into an ionic liquid phase. After phase separation, the enriched analyte in the final solution is determined by flame atomic absorption spectrometry. ISFME is a fast, simple and suitable method for extraction and concentration of inorganic such as metal ions from sample solutions containing a high concentration of salts. The influences of the analytical parameters on the microextraction efficiency were investigated and optimized. Under the optimum conditions, the limit of detection (3s) and the enhancement factor were 0.1 μg L?1 and 70, respectively. The relative standard deviation (R.S.D) was obtained 1.3%. The accuracy of the method was confirmed by analyzing certified reference materials. The presented method was successfully applied for the determination of lead in water samples.  相似文献   

2.
A green and sensitive dispersive liquid-phase microextraction procedure based on room-temperature ionic liquid (1-hexyl-3-methylimidazolium hexafluorophosphate) for preconcentration and determination of total iron in real samples prior to flame atomic absorption spectrometry was developed. 2-Mercaptopyridine-N-oxide (pyrithione) and ethanol were used as complexing agent and dispersive solvent in the proposed method, respectively. The factors influencing the extraction were optimized. Under optimum conditions, the enhancement factor of 15 was obtained from only 11.35 mL of aqueous phase. The linear dynamic range and the detection limit were 10.0–700 and 2.4 μg L?1, respectively. The relative standard deviation (RSD) for ten replicate measurements of 500 μg L?1 of iron is 3.1 %. The developed method has been successfully applied for the determination of iron in water samples, human blood serum and rock certified reference material with high efficiency.  相似文献   

3.
First, the extraction and preconcentration of ultratrace amounts of lead(II) ions was performed using microliter volumes of a task‐specific ionic liquid. The remarkable properties of ionic liquids were added to the advantages of microextraction procedure. The ionic liquid used was trioctylmethylammonium thiosalicylate, which formed a lead thiolate complex due to the chelating effect of the ortho‐positioned carboxylate relative to thiol functionality. So, trioctylmethylammonium thiosalicylate played the roles of both chelating agent and extraction solvent simultaneously. Hence, there is no need to use a ligand. The main parameters affecting the efficiency of the method were investigated and optimized. Under optimized conditions, this approach showed a linear range of 2.0–24.0 ng/mL with a detection limit of 0.0010 ng/mL. The proposed method was applied to the extraction and preconcentration of lead from red lipstick and pine leaves samples prior to electrothermal atomic absorption spectroscopic determination.  相似文献   

4.
A simple and green reversed-phase ultrasonic assisted liquid?liquid microextraction method for determination of Cu, Cd, Ni, Pb and Zn in edible oils was developed. Detection was carried out by flame atomic absorption spectrometry. The influence of main parameters including ultrasonic time and temperature, disperser solvent, volume of extracting solvent and centrifuging time on the extraction efficiency of target analytes were investigated and optimized. In the proposed method, a few microliters of water (containing 3%, v/v, nitric acid) as extracting solvent was injected into the oil sample and mixture transferred to ultrasonic bath. Then, the mixture was centrifuged in order to accelerate in phase separation. Finally, the aqueous phase was removed and delivered to flame atomic absorption spectrometer. Calibration curves for all metals were linear in the range of 5?100 ng/mL. The limit of detections for Cu, Cd, Ni, Pb and Zn were 0.8, 0.3, 0.5, 1.5 and 0.5 ng/mL, respectively. Relative standard deviation (RSD) values were in the range of 0.6?1.9%. The recoveries were in the range of 95.2–101.2% with RSD values ranging from 0.8 to 1.9%. The proposed method was applied successfully for the determination of interested metals in commercial edible oils.  相似文献   

5.
A novel liquid–liquid microextraction method, namely, solvent‐vapor‐assisted liquid–liquid microextraction for the determination of dimethyl phthalate, diethyl phthalate, dibutyl phthalate and bis(2‐ethylhexyl) phthalate in the aqueous samples using gas chromatography with mass spectrometry was developed. In the proposed method, extracting solvent was heated, and solvent vapor as the extracting phase was injected into the sample solution. As a result of the low temperature of the sample solution and higher density of the extracting phase than the aqueous medium, solvent vapor was condensed and an organic‐phase drop formed in the bottom of sample tube. Because of the gas status of the extracting solvent, the surface area between the extracting solvent and the aqueous sample was remarkably high. Under the optimized conditions, tetrachloride carbon was used as an extracting solvent. The method shows high coefficient of determination (R 2) values in the range of 0.5–200 and 1.0–200 ng/mL for the target analytes. Enrichment factors and limits of detection for the studied phthalates are obtained in the ranges of 2800–3000 and 0.15–0.3 ng/mL, respectively. Recoveries and relative standard deviations were in the range of 80.0–100.0 and 2.2–7.8%, respectively. The proposed method successfully used for analysis of several aqueous samples.  相似文献   

6.
Room temperature ionic liquids are regarded as “Green solvents” for their nonvolatile and thermally stable properties. They are employed to replace traditional volatile organic solvents in organic synthesis, solvent extraction, and electrochemistry. In this work, a water immiscible room temperature ionic liquid, 1‐butyl‐3‐methylimidazolium hexafluorophosphate [C4mim][PF6], was used as an alternative solvent for liquid/liquid extraction of copper ions. Metal chelators, including dithizone, 8‐hydroxyquinoline, and 1‐(2‐pyridylazo)‐2‐naphthol, were employed to form neutral metal‐chelate complexes with copper ions so that copper ions were extracted from aqueous solution into [C4mim][PF6]. The parameters that affect the extraction of copper ions with this biphasic system were investigated. The extraction behavior in this novel biphasic system is shown to be consistent with that of traditional solvents. For example, the extraction with this biphasic system is strongly pH dependent. So, the extraction efficiency of coppers ion from an aqueous phase can be manipulated by tailoring the pH value of the extraction system. Hence, the extraction, separation and preconcentraction of copper ions can be accomplished by controlling the pH value of the extraction system. It appears that the use of ionic liquid as an alternate solvent system in liquid/liquid extraction of copper ions is very promising.  相似文献   

7.
A novel manual‐shaking‐ and ultrasound‐assisted surfactant‐enhanced emulsification microextraction method was developed for the determination of three fungicides in juice samples. In this method, the ionic liquid, 1‐ethyl‐3‐methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, instead of a volatile organic solvent was used as the extraction solvent. The surfactant, NP‐10, was used as an emulsifier to enhance the dispersion of the water‐immiscible ionic liquid into an aqueous phase, which accelerated the mass transfer of the analytes. Organic dispersive solvent typically required in common dispersive liquid–liquid microextraction methods was not necessary. In addition, manual shaking for 15 s before ultrasound to preliminarily mix the extraction solvent and the aqueous sample could greatly shorten the time for dispersing the ionic liquid into aqueous solution by ultrasound irradiation. Several experimental parameters affecting the extraction efficiency, including type and volume of extraction solvent, type and concentration of surfactant, extraction time, and pH, were optimized. Under the optimized conditions, good linearity with the correlation coefficients (γ) higher than 0.9986 and high sensitivity with the limit of detection ranging from 0.4 to 1.6 μg/L were obtained. The average recoveries ranged from 61.4 to 86.0% for spiked juice, with relative standard deviations from 1.8 to 9.7%. The proposed method was demonstrated to be a simple, fast, and efficient method for the analysis of the target fungicides in juice samples.  相似文献   

8.
Here, task‐specific ionic liquid solid‐phase extraction is proposed for the first time. In this approach, a thiourea‐functionalized ionic liquid is immobilized on the solid sorbent, multiwalled carbon nanotubes. These modified nanotubes packed into a solid‐phase extraction column are used for the selective extraction and preconcentration of ultra‐trace amounts of lead(II) from aqueous samples prior to electrothermal atomic absorption spectroscopy determination. The thiourea functional groups act as chelating agents for lead ions retaining them and so, give the selectivity to the sorbent. Elution of the retained ions can be performed using an acidic thiourea solution. The effects of experimental parameters including pH of the aqueous solution, type and amount of eluent, and the flow rates of sample and eluent solutions on the separation efficiency are investigated. The linear dependence of absorbance of lead on its concentration in the initial solution is in the range of 0.5–40.0 ng/mL with the detection limit of 0.13 ng/mL (3sb/m, n = 10). The proposed method is applicable to the analysis of red lipstick, pine leaves, and water samples for their lead contents.  相似文献   

9.
In this study, a simultaneous derivatization/air‐assisted liquid–liquid microextraction method has been developed for sample preparation of some phenolic compounds in fuels and engine oil. Analytes are transferred by back liquid–liquid extraction into NaOH solution and then are derivatized with butyl chloroformate and extracted simultaneously into carbon tetrachloride. The extracted derivatized analytes are analyzed using gas chromatography with flame ionization detection. The effect of extracting solvent type, derivatization agent and extraction solvent volumes, ionic strength of the aqueous solution, number of extraction cycles, etc., on the extraction efficiency is investigated. The calibration graphs are linear in the range of 3–10 000 μg/L. Enhancement factors, enrichment factors, and extraction recoveries are in the ranges of 497 to 1471, 571 to 991, and 60 to 109%, respectively. Detection limits are obtained in the range of 0.8 to 2.0 μg/L. Relative standard deviations for the extraction of each selected phenols are in the ranges of 2–4% for intraday (n = 6) and 3–6% (n = 5) for interday precisions for 200 μg/L. This technique is successfully applied for the extraction, preconcentration, and determination of the selected phenols in gasoline, kerosene, gas oil, and engine oil.  相似文献   

10.
ABSTRACT

Tandem dispersive liquid liquid microextraction coupled with micro - sampling flame atomic absorption spectrometry for rapid determination of lead2 and cadmium2 ions in environmental water samples. A simple method termed as tandem dispersive liquid–liquid microextraction coupled with micro-sampling flame atomic absorption spectrometry is used for determination of the lead(II) and cadmium(II) ions in different environmental water samples. According to the proposed method, the target analytes are extracted from an aqueous sample solution (10 mL) into a micro-volume of an organic solvent, and then they are selectively back-extracted into an aqueous acceptor solution (150 μL) to increase the compatibility of the extractant phase with a final analyser system and provide a suitable enrichment factor. The developed method is very fast, implemented in just about 7 min, and provides a high sample clean-up. The factors influencing the extraction efficiency including the type and volume of the organic solvent, pH and volume of the acceptor solution, and number of extractions are thoroughly examined and optimised. Under the optimal experimental conditions, the developed method provides a good linearity (in the range of 0.4–300 ng mL?1 (R2 ≥ 0.994)), and low limits of detection (in the range of 0.07–0.31 ng mL?1). Finally, the method is successfully applied for the direct determination of the understudied analytes in the river, dam, and well water samples.  相似文献   

11.
A dispersive liquid‐liquid microextraction method based on the dispersion of 1,2‐dichlorobenzene as an extraction solvent into an aqueous phase in the presence of ethanol as a dispersive solvent for the preconcentration of Co2+ and Ni2+ ions is discussed. 1‐Nitroso 2‐naphtol was used as a chelating agent prior to the extraction and the preconcentrated analyte was determined by flame atomic absorption spectrometry. The effect of various experimental parameters including the extraction and dispersive solvent type and volume, pH, amount of the chelating agent, etc. on the microextraction and complex formation was investigated for finding the optimum conditions. The enhancement factors were about 61.9 and 51.8, the calibration graphs were linear in the range of 10‐150 μgL?1 and 10‐250 μgL?1 with detection limits of 2.42 μgL?1 and 1.59 μgL?1, and RSD (n = 5) of 3.08% and 2.17% for cobalt and nickel, respectively. The method was successfully applied to the determination of Co and Ni in water and vitamin B12.  相似文献   

12.
In the present study, an environment-friendly sample preparation method termed ionic liquid-based dispersive liquid–liquid microextraction combined with flame atomic absorption spectrometry has been developed for the determination of Pb(II) ion in water samples prior to flame atomic absorption spectrometry determination. In this method, ionic liquid was used as an extraction solvent instead of the organic solvent used in the conventional dispersive liquid–liquid microextraction (DLLME) assay, and there is no need for a chelating agent. Several variables that may affect extraction efficiencies, including pH, the volume of ionic liquid, the type and volume of disperser solvent, salt addition, and the time for centrifugation and extraction were studied and optimised. Under the optimised conditions, the calibration curve exhibited linearity over the range of 20.0–1000.0 μg L?1. The enrichment factor and the limit of detection based on 3Sb/m were 35.0 and 5.9 μg L?1, respectively. Seven replicate determination of a solution containing of 100.0 μg L?1 Pb(II) ions gave a relative standard deviation of ±2.1%. Finally, the feasibility of the proposed method for Pb(II) determination was assessed by the analysis of certi?ed reference material and various water samples and the satisfactory results were obtained.  相似文献   

13.
An ultrasound assisted emulsification microextraction (USAEME) is successfully used for extraction and determination of trace amount of iron in water and tea samples, followed by flame atomic absorption spectroscopy (FAAS). In this approach, a new synthetic ligand dimetyl (E)‐2‐[(Z)‐1‐acetyl)‐2‐hydroxy‐1‐propenyl]‐2‐butenedioate (DAHPB) is used as chelating agent and chloroform is selected as an extraction solvent. The factors influencing the complex formation and extraction by USAEME method are optimized. These factors are extraction solvent type as well as extraction volume, time, temperature, pH, and the amount of chelating agent. Under optimum conditions, an enrichment factor of 202.9 is obtained from only 7.1 mL of aqueous phase. The calibration graph using the preconcentration system for iron is linear between 40.0 and 800.0 μg L?1 with a detection limit of 7.4 μg L?1. The relative standard deviation (R.S.D) for ten replicate measurements of 500.0 μg L?1 of iron is 2.5%.  相似文献   

14.
A simple method is introduced providing a highly clean microextraction for the determination of some anti‐inflammatory drugs as the model analytes in human urine and environmental matrices. This method is based upon the implementation of two consecutive emulsification liquid‐phase microextractions, which are separated by a syringe filtration step. In this method, the organic extraction solvent (dihexyl ether) is dispersed into the aqueous sample solution (20 mL), and the resulting cloudy mixture is passed through a hydrophilic polytetrafluoroethylene syringe filter. By this action, the extraction phase containing the analytes and many interfering species that could be transferred into the organic phase is retained behind the hydrophilic membrane. The filter is then detached from the syringe and attached to another syringe containing an aqueous solution (pH 12.0, 150 μL), and by the in‐syringe dispersion of the organic phase into the aqueous phase, the analytes are selectively back‐extracted into the aqueous phase. The developed method is centrifuge‐free and very simple, and provides a high sample clean‐up in a few minutes. Under the optimized experimental conditions, the developed method provided a linearity in the range of 2.0–2000 ng/mL, a low limit of detection (0.5 ng/mL), and enrichment factors of 47–53.  相似文献   

15.
A simple in situ solvent formation microextraction methodology based on the application of ionic liquid (IL) as an extractant solvent and sodium hexafluorophosphate (NaPF6) as an ion-pairing agent was proposed for the preconcentration of trace levels of cadmium. In this method cadmium was complexed with O,O-diethyldithiophosphate (DDTP) and extracted into an ionic liquid phase. After phase separation, the enriched analyte in the final solution is determined by flame atomic absorption spectrometry (FAAS). ISFME is a simple and rapid method for extraction and preconcentration of metal ions from sample solutions containing a high concentration of salt. Some effective factors that influence the microextraction efficiency were investigated and optimized. Under the optimum experimental conditions, the limit of detection (3 s) and the enhancement factor were 0.07 μg L−1 and 78, respectively. The relative standard deviation (R.S.D.) was obtained 2.42%. The accuracy of the method was confirmed by analyzing certified reference materials for trace elements in seawater (GBW (E) 080040 seawater). The proposed method was successfully applied for the determination of cadmium in water samples and food grade salts.  相似文献   

16.
A dispersive liquid–liquid microextraction method using a lighter‐than‐water phosphonium‐based ionic liquid for the extraction of 16 polycyclic aromatic hydrocarbons from water samples has been developed. The extracted compounds were analyzed by liquid chromatography coupled to fluorescence/diode array detectors. The effects of several experimental parameters on the extraction efficiency, such as type and volume of ionic liquid and disperser solvent, type and concentration of salt in the aqueous phase and extraction time, were investigated and optimized. Three phosphonium‐based ionic liquids were assayed, obtaining larger extraction efficiencies when trihexyl‐(tetradecyl)phosphonium bromide was used. The optimized methodology requires a few microliters of a lighter‐than‐water phosphonium‐based ionic liquid, which allows an easy separation of the extraction solvent phase. The obtained limits of detection were between 0.02 and 0.56 μg/L, enrichment factors between 109 and 228, recoveries between 60 and 108%, trueness between 0.4 and 9.9% and reproducibility values between 3 and 12% were obtained. These figures of merit combined with the simplicity, rapidity and low cost of the analytical methodology indicate that this is a viable and convenient alternative to the methods reported in the literature. The developed method was used to analyze polycyclic aromatic hydrocarbons in river water samples.  相似文献   

17.
A simple and sensitive suspended droplet solvent microextraction (SDSME) method is proposed for the preconcentration and determination of copper by flame atomic absorption spectrometry (FAAS). The analytical procedure is based upon the formation of a complex between Cu(II) and 1-phenyl-1,2-propandione-2-oxime-thiosemicarbazone (PPDOT) as a complexing agent. After extraction of the complex by 1-octanol, copper concentration in the solvent drop was determined by FAAS. The effect of different parameters such as pH, PPDOT concentration, kind of buffer, kind and volume of organic solvent, volume of aqueous phase, extraction time, stirring rate of sample solution, temperature, and ionic strength were investigated. The effect of foreign ions on the determination was also studied. Under the optimized chemical and instrumental conditions, a linear calibration curve was achieved in the range of 0.0050–0.26 mg/L, with the limit of detection of 3 μg/L and the enrichment factor of 52.6. This method can be applied successfully to the determination of copper in water samples.  相似文献   

18.
A simultaneous derivatization/air‐assisted liquid–liquid microextraction technique has been developed for the sample pretreatment of some parabens in aqueous samples. The analytes were derivatized and extracted simultaneously by a fast reaction/extraction with butylchloroformate (derivatization agent/extraction solvent) from the aqueous samples and then analyzed by GC with flame ionization detection. The effect of catalyst type and volume, derivatization agent/extraction solvent volume, ionic strength of aqueous solution, pH, numbers of extraction, aqueous sample volume, etc. on the method efficiency was investigated. Calibration graphs were linear in the range of 2–5000 μg/L with squared correlation coefficients >0.990. Enhancement factors and enrichment factors ranged from 1535 to 1941 and 268 to 343, respectively. Detection limits were obtained in the range of 0.41–0.62 μg/L. The RSDs for the extraction and determination of 250 μg/L of each paraben were <4.9% (n = 6). In this method, the derivatization agent and extraction solvent were the same and there is no need for a dispersive solvent, which is common in a traditional dispersive liquid–liquid microextraction technique. Furthermore, the sample preparation time is very short.  相似文献   

19.
We report on a new method for preconcentration of silver ion at trace level in environmental samples, and its subsequent determination by flame atomic absorption spectrometry (FAAS). The room temperature ionic liquid (RTIL) 1-butyl-3-methylimidazolium hexafuorophosphate and the chelator 5-(4-dimethylaminobenzylidene)-rhodanine were used for extraction. Ag(I) was back-extracted from the organic phase into thiosulfate solution and then determined via FAAS. The effects of pH, concentration of chelating agent, extraction time and temperature, amounts of ionic liquid, ionic strength and potentially interfering ions were studied. Under optimized conditions, the enhancement factor is 30 was achieved. The detection limit (3???) is 0.28?ng?mL?1, and the relative standard deviation is 4.1% for 7 replicate determinations at 5?ng?mL?1 of Ag(I). The method was validated by analysis of certified reference materials and applied to the determination of Ag(I) in environmental samples with satisfactory results.
Graphical abstract
Silver ions at trace level in environmental samples were chelated by 5-(4-dimethylaminobenzylidene)-rhodanine and preconcentrated by room temperature ionic liquid. After back-extraction, silver was determined by flame atomic absorption spectrometry sensitively.  相似文献   

20.
A dispersive liquid‐liquid microextraction (DLLME) technique was proposed for the enrichment and graphite furnace atomic absorption spectrometric (GFAAS) determination of Cu2+ in water samples. In this method a mixture of 480 μL acetone (disperser solvent) containing 26 μg S,S‐bis(2‐aminobenzyl)‐dithioglyoxime (BAT) ligand and 20 μL carbon tetrachloride (extraction solvent) was rapidly injected by a syringe into 5 mL aqueous sample containing copper ions (analyte). Thereby, a cloudy solution formed. After centrifugation, the fine droplets containing the extracted copper complex were sedimented at the bottom of the conical test tube. This phase was collected by a microsyring and after dilution by methanol, 20 μL of it was injected into the graphite tube of the instrument for analysis. Effects of some parameters on the extraction, such as extraction and disperser solvent type and volume, extraction time, salt concentration, pH and concentration of the chelating agent were optimized. The response surface method was used for optimization of the effective parameters on the extraction recovery. Under these conditions, an enrichment factor of 312 was obtained. The calibration graph was linear in the rage of 2–50 μ L−1 Cu2+ with a detection limit of 0.03 μg L−1 and a relative standard deviation (RSD) for five replicate measurements of 3.4% at 20 μg L−1 Cu2+. The method was successfully applied to the determination of Cu2+ in some spring water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号