首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Microstructural properties of nano-ionic thin films of gadolinia-doped ceria (GDC) prepared by pulsed laser ablation from sintered targets of gadolinia (5–20 mol%) doped ceria are investigated. The ionic conductivity measurements of the sintered pellets showed a decrease in the activation energy from 1.1 to 0.65 eV for 5 and 30 mol% gadolinia-doped ceria, respectively. The microstructural properties of the GDC films as a function of substrate temperature, oxygen partial pressure, and laser energy show that the films are polycrystalline in the entire range of substrate temperature. The grain size is found to increase with increasing temperature up to 873 K. Further improved crystallinity is noticed for the films grown with oxygen partial pressure of 0.1–0.2 mbar. X-ray diffraction and transmission electron microscopy (TEM) reveal nanocrystalline grains with textured growth along <111> orientation in these films at low substrate temperature and at lower oxygen partial pressure. TEM study shows a uniform distribution of nanocrystal of 8–10 nm for energies ≤200 mJ/pulse, and nanocrystals embedded in a large crystalline matrix of doped ceria for energies in the range 400–600 mJ/pulse. Raman spectroscopy also confirms the defects in these films. The study also reveals that the substrate temperature and oxygen partial pressure could influence preferred orientation, while the laser energy could significantly influence defect concentration in these films. Invited paper presented at the Third International Conference on Ionic Devices (ICID 2006), Chennai, Tamilnadu, India, Dec. 7–9, 2006.  相似文献   

2.
Microstructural characterization of thin films of 5 mol% gadolinia-doped ceria films deposited by pulsed laser ablation in the energy range 100–600 mJ/pulse has been investigated. As-deposited films were found to be nanocrystalline with preferred orientation. X-ray diffraction (XRD) analysis revealed that the size of the nanocrystals of doped ceria does not vary significantly with increasing laser energy, while transmission electron microscopy (TEM) study showed a uniform distribution of nanocrystals of 8–10 nm for energies ≤200 mJ/pulse and nanocrystals embedded in a large crystalline matrix of doped ceria for energies in the range 400–600 mJ/pulse. Though, the laser-ablated films were totally free from secondary phases, lattice imaging of the large grained doped ceria showed growth-induced defects such as dislocations and ledges. This artice was accidentally published twice. This is the second publication, please cite only the authoritative first one which is available at . An additional erratum is available at . An erratum to this article can be found at  相似文献   

3.
Ultrathin crystalline films of 10 mol% gadolinia-doped ceria (CGO10) are grown on MgO (100) substrates by pulsed laser deposition at a moderate temperature of 400°C. As-deposited CGO10 layers of approximately 4 nm, 14 nm, and 22 nm thickness consist of fine grains with dimensions ≤∼11 nm. The films show high density within the thickness probed in the X-ray reflectivity experiments. Thermally activated grain growth, density decrease, and film surface roughening, which may result in the formation of incoherent CGO10 islands by dewetting below a critical film thickness, are observed upon heat treatment at 400°C and 800°C. The effect of the grain coarsening on the electrical characteristics of the layers is investigated and discussed in the context of a variation of the number density of grain boundaries. The results are evaluated with regard to the use of ultrathin CGO10 films as seeding templates for the moderate temperature growth of thick solid electrolyte films with improved oxygen transport properties.  相似文献   

4.
《Solid State Ionics》2006,177(19-25):2075-2079
The effects of gadolinia-doped ceria (CGO, Ce0.8Gd0.2O1.9−x) and yttria-doped zirconia (8YSZ, Zr0.92Y0.08O2−x) interlayers prepared by spray pyrolysis between vacuum plasma-sprayed 8YSZ electrolytes (8YSZ–VPS) and screen-printed (La0.8Sr0.2)0.98MnO3 cathodes (LSM) on the power output of solid oxide fuel cells (SOFC) are investigated. Amorphous thin films are deposited and then converted to nanocrystalline electrolyte–cathode interlayers during the first heat-up cycle of a SOFC to the operating temperature. CGO thin films between the YSZ plasma-sprayed electrolyte and the LSM cathode increased the power output by more than 20% compared to cells without interlayers, whereas YSZ films degraded the power output of cells. It is assumed that CGO improves the charge transfer at the electrolyte–cathode interface and that the CGO layer prevents the formation of undesirable insulation of La-zirconate at the interface 8YSZ/LSM.  相似文献   

5.
The growth and morphology of ultra-thin CeO2(1 1 1) films on a Cu(1 1 1) substrate were investigated by means of low energy electron diffraction (LEED) and scanning tunneling microscopy (STM). The films were grown by physical vapor deposition of cerium in an oxygen atmosphere at different sample temperatures. The preparation procedure is based on a modification of a previous method suggested by Matolin and co-workers [1], involving growth at elevated temperature (520 K). Here, LEED shows good long range ordering with a “(1.5 × 1.5)” superstructure, but STM reveals a three-dimensional growth mode (Vollmer-Weber) with formation of a closed film only at larger thickness. Using a kinetically limited growth process by reactive deposition at low sample temperatures (100 K) and subsequent annealing, we show that closed layers of ceria with atomically flat terraces can be prepared even in the regime of ultra-thin films (1.5 ML). Closed and atomically flat ceria films of larger thickness (3 ML) are obtained by applying a multistep preparation procedure, in which successive ceria layers are homoepitaxially grown on this initial film. The resulting overlayers show strong similarities with the morphology of CeO2(1 1 1) single crystal surfaces, suggesting the possibility to model bulk ceria by thin film systems.  相似文献   

6.
The morphology of ceria films grown on a Ru(0 0 0 1) substrate was studied by scanning tunneling microscopy in combination with low-energy electron diffraction and Auger electron spectroscopy. The preparation conditions were determined for the growth of nm-thick, well-ordered CeO2(1 1 1) films covering the entire surface. The recipe has been adopted from the one suggested by Mullins et al. [D.R. Mullins, P.V. Radulovic, S.H. Overbury, Surf. Sci. 429 (1999) 186] and modified in that significantly higher oxidation temperatures are required to form atomically flat terraces, up to 500 Å in width, with a low density of the point defects assigned to oxygen vacancies. The terraces often consist of several rotational domains. A circular shape of terraces suggest a large variety of undercoordinated sites at the step edges which preferentially nucleate gold particles deposited onto these films. The results show that reactivity studies over ceria and metal/ceria surfaces should be complemented with STM studies, which provide direct information on the film morphology and surface defects, which are usually considered as active sites for catalysis over ceria.  相似文献   

7.
The deposition of gadolinia-doped ceria (CGO, Gd0.1Ce0.9O1.95) and LaGaO3-based perovskite oxides (LSGM, La0.9Sr0.1Ga0.8Mg0.2O2.87) thin films on a stainless steel substrate was studied using the electrostatic spray deposition (EDS) technique. The effect of process conditions, such as deposition temperature, deposition time and liquid flow rate, on the surface morphology and microstructure of thin films was examined with scanning electron microscopy (SEM) and powder X-ray diffraction (XRD). The deposited CGO films with a highly porous and three-dimensional interconnected structure were obtained at a liquid flow rate of 0.5 ml/h, a deposition temperature of 503 K and a deposition time ranging from 0.5 to 1 h. On the other hand, the deposited LSGM thin films with porous microstructure were also obtained at the deposition time of 1 h, the deposition temperature of 533 K and the liquid flow rate of 0.5 ml/h. The deposited CGO and LSGM thin films were amorphous at the used deposition temperature. Subsequently, the samples were annealed at 1173 K for 2 h and the desired crystal structures were obtained. The chemical analysis of the thin films was investigated by energy dispersive X-ray (EDX) analysis. The observed chemical compositions of the samples were in a fair agreement with those of the starting solutions.  相似文献   

8.
In order to establish a new platform to manufacture micro-sized solid oxide fuel cells (SOFCs) with low operating temperatures, new design concepts, new preparation methods and new materials are being explored. Our studies in this paper are focused on the electrolyte material, and in particular gadolinia doped ceria (GDC), an electrolyte material, likely to replace the traditional yttria-stabilised zirconia (YSZ) for low temperature applications. GDC films were grown on a single crystal Si by pulsed laser deposition (PLD). The microstructure of the films as a function of growth time has been studied. We have found that the mean grain size increases with film thickness h as h2/5, in agreement with theoretical results.  相似文献   

9.
Bi0.5(Na0.7K0.2Li0.1)0.5TiO3 (BNKLT) thin films were prepared on Pt/Ti/SiO2/Si substrates by pulsed laser deposition (PLD) technique. The films prepared were examined by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The effects of the processing parameters, such as oxygen pressure, substrate temperature and laser power, on the crystal structure, surface morphology, roughness and deposition rates of the thin films were investigated. It was found that the substrate temperature of 600 °C and oxygen pressure of 30 Pa are the optimized technical parameters for the growth of textured film, and all the thin films prepared have granular structure, homogeneous grain size and smooth surfaces.  相似文献   

10.
The morphology as well as the spatially resolved elemental and chemical characterization of 10 mol% gadolinia doped ceria (CGO10) structures prepared by pulsed laser deposition (PLD) technique are investigated by scanning transmission electron microscopy accompanied with electron energy loss spectroscopy and energy dispersive X-ray spectroscopy. A dense, columnar and structurally inhomogeneous CGO10 film, i.e. exhibiting grain size refinement across the film thickness, is obtained in the deposition process. The cerium M4,5 edges, used to monitor the local electronic structure of the grains, indicate apparent variation of the ceria valence state across and along the film. No element segregation to the grain boundaries is detected. These results are discussed in the context of solid oxide fuel cell applications.  相似文献   

11.
Gadolinia-doped ceria (GDC) films were prepared by RF reactive magnetron sputtering from a Gd-10 at.% Ce alloy target in reactive O2/Ar gas mixtures and annealed at 700 °C for 2 h. Material characteristics and chemical compositions of GDC films were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). Electrical behaviors were measured by AC impedance in the range of 500–700 °C at OCV for air condition. The microstructure of GDC films was found to be an assembly of columnar crystallites with a cubic fluorite structure. The total conductivity of 700 °C-annealed GDC (GDC-1) with the obtained composition of (Ce0.911Gd0.089)O1.938 was higher than that of bulk yttria-stabilized zirconia (YSZ), but smaller than bulk GDC. The governing mechanism of conduction of sputtered-GDC electrolyte films was mainly governed by a grain boundary process, which resulted in a blocking effect and the lower conductivity of thin films than that of bulk GDC samples. Our results suggested that sputtered-GDC films with a comparable conductivity can be used as solid electrolyte layers for a solid oxide fuel cell (SOFC) system as compared to the well-known YSZ.  相似文献   

12.
A thin solid C60 film has been irradiated under a fix incident angle with pulsed UV light at the wavelength of 266 nm. With scanning electron microscopy and atomic force microscopy, a surface transformation of the irradiated films has been observed to a periodic surface structure at low laser fluences in air as well as in vacuum and to strong morphology changes at higher laser fluences only in air. For both structural transformations the occuring surface chemistry has been studied with Raman spectroscopy and X-ray photoelectron spectroscopy. In the case of the periodical lines, these results in addition to a detailed discussion of the existing models for laser induced surface structures have shown that the C60 film remains a van der Waals solid but with much oxygen incorporation in the lattice and does not polymerize as it is known to happen during continuous wave irradiation. The case of strong morphology changes could be explained by detailed comparison of the obtained Raman and X-ray photoelectron spectroscopy data as the formation of a new carbon phase with diamond-like sp3 bondings through an oxygen-assisted fullerene cage opening.  相似文献   

13.
14.
The electrode reaction was examined on ceria coated YSZ by a platinum point electrode in H2-H2O atmosphere at 973 K- 1173 K. The thickness of the ceria coating layer was altered from 0 to 2.5 μm, fabricated by a laser ablation and by a vacuum vapor deposition method on YSZ single crystals. The electrode / electrolyte interface conductivity increased with 1/4 powers ofp(H2) andp(H2O) on both ceria coated and non-coated YSZ. The interface conductivity was significantly improved on a thicker ceria coating surface than 1 μm. The effective electrode reaction radius also increased in a thick ceria coating. The18O/16O exchange experiment at low oxygen partial pressure revealed that the oxygen surface exchange rate of ceria is not high compared with that of YSZ. It can be concluded that the bulk ionic conduction of ceria makes a more effective contribution to the electrode reaction than the surface catalytic activity in H2-H2O atmosphere. Paper presented at the 4th Euroconference on Solid State Ionics, Renvyle, Galway, Ireland, Sept. 13–19, 1997  相似文献   

15.
Thermal properties of 15-mol% gadolinia doped ceria thin films (Ce0.85Gd0.15 O1.925) prepared by pulsed laser ablation on silicon substrates in the temperature range 473–973 K are presented. Thermal diffusivities and thermal conductivities were evaluated using photoacoustic spectroscopy. The influence of grain size on thermal properties of the films as a function of deposition temperature is studied. It is observed that the thermal diffusivity and the conductivity of these films decreases up to 873 K and then increases with substrate temperatures. The thermal properties obtained in these films are discussed on the basis of influence of grain size on phonon scattering.  相似文献   

16.
Orthorhombic YMnO3 thin films were epitaxially grown on bare and LaNiO3 buffered (0 0 1)-SrTiO3 substrates by pulsed laser deposition under various oxygen pressures from 5 to 30 Pa. The crystal structure and microstructure of these films have been characterized by both X-ray diffractions and transmission electron microscopy. The leakage current, modeled as the space charge limited current (SCLC) mechanism, decreased significantly with the increase of oxygen content. It is further found that the magnetic property of films is greatly enhanced in YMnO3 films grown under high oxygen pressure, which can be explained decreased oxygen vacancies. In addition, bipolar switching behavior was obtained only in the films grown under 30 Pa oxygen pressure, which is attributed to the decrease of voltage-driven oxygen vacancy migration.  相似文献   

17.
We synthesized by pulsed laser deposition (Ba,Sr,Y)TiO3 and (Ba,Pb,Y)TiO3 thin films on mechanically polished nickel substrates.The synthesized thin films were analyzed for: crystalline structure by X-ray diffractometry, morphology and surface topography by atomic force microscopy, optical and scanning electron microscopy, and elemental composition by energy dispersive X-ray spectroscopy and electrical properties by electrical measurements.We have shown that film properties were determined by the dopants, target composition, and deposition parameters (oxygen pressure, substrate temperature and incident laser fluence). All films exhibited a semiconducting behavior, as proved by the decrease of electrical resistance with heating temperature.  相似文献   

18.
Microstructural characterization of thin films of 5 mol% gadolinia doped ceria films deposited by pulsed laser ablation in the energy range 100–600 mJ/pulse has been investigated, as deposited films were found to be nanocrystalline with preferred orientation. X-ray diffraction analysis revealed that the size of the nanocrystals of doped ceria does not vary significantly with increasing laser energy, whereas transmission electron microscopy study showed a uniform distribution of nanocrystal of 8–10 nm for energies ≤200 mJ/pulse and nanocrystals embedded in a large crystalline matrix of doped ceria for energies in the range 400–600 mJ/pulse. Although the laser-ablated films were totally free from secondary phases, lattice imaging of the large grained doped ceria showed growth-induced defects, such as dislocations and ledges.  相似文献   

19.
The effects of oxygen pressure during deposition on microstructure and magnetic properties of strontium hexaferrite (SrFe12O19) films grown on Si (100) substrate with Pt (111) underlayer by pulsed laser deposition have been investigated. X-ray diffraction pattern confirms that the films have c-axis perpendicular orientation. The c-axis dispersion (Δθ50) increases and c-axis lattice parameter decreases with increasing oxygen pressure. The films have hexagonal shape grains with diameter of 150-250 nm as determined by atomic force microscopy. The coercivities in perpendicular direction are higher than those in in-plane direction, which shows the films have perpendicular magnetic anisotropy. The saturation magnetization and anisotropy field for the film deposited in oxygen pressure of 0.13 mbar are comparable to those of the bulk strontium hexaferrite. Higher oxygen pressure leads to the films having higher coercivity and squareness. The coercivity in perpendicular and in-plane directions of the film deposited in oxygen pressure of 0.13 mbar are 2520 Oe and 870 Oe, respectively.  相似文献   

20.
In this paper we present the growth of La0.5Sr0.5CoO3 (LSCO) films on MgO, quartz, and silicon substrates by pulsed laser deposition (PLD) using a Ti:sapphire laser (50 fs, 800 nm wavelength). The morphology and the structure of the films were studied by X-ray diffraction, atomic force microscopy, and scanning electron microscopy. The films were polycrystalline and exhibit a good adherence to the Si substrate. Different deposition parameters such as substrate temperature, oxygen pressure, and laser fluence were varied to achieve good surface quality and low resistivity crystalline films. We also defined the optimum conditions in which the deposited film surface is particulate free. The best films (droplets free) were grown at 625 °C, in an ambient oxygen pressure of 6 mbar, with an incident laser fluence of 0.19 J/cm2. This is a mandatory step in the complex work of fabricating La0.5Sr0.5CoO3/BaTiO3/La0.5Sr0.5CoO3 heterostructures for the development of thin film capacitors for non-volatile ferroelectric access memory devices. PACS 81.15 Fg; 42.62-b; 68.65.Ac  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号