首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Several new complexes of a tridentate ONS Schiff base derived from the condensation of S-benzyldithiocarbazate with salicylaldehyde have been characterised by elemental analyses, molar conductivity measurements and by i.r. and electronic spectra. The Schiff base (HONSH) behaves as a dinegatively charged ligand coordinating through the thiolo sulphur, the azomethine nitrogen and the hydroxyl oxygen. It forms mono-ligand complexes: [M(ONS)X], [M=NiII, CuII, CrIII, SbIII, ZnII, ZrIV or UVI with X = H2O, Cl]. The ligand produced a bis-chelated complex of composition [Th(ONS)2] with ThIV. Square-planar structures are proposed for the NiII and CuII complexes. Antimicrobial tests indicate that the Schiff base and five of the metal complexes of CuII, NiII, UVI, ZnII and SbIII are strongly active against bacteria. NiII and SbIII complexes were the most effective against Pseudomonas aeruginosa (gram negative), while the CuII complex proved to be best against Bacillus cereus (gram positive bacteria). Antifungal activities were also noted with the Schiff base and the UVI complex. These compounds showed positive results against Candida albicans fungi, however, none of them were effective against Aspergillus ochraceous fungi. The Schiff base and its zinc and antimony complexes are strongly active against leukemic cells (CD50 = 2.3–4.3 μg cm−3) while the copper, uranium and thorium complexes are moderately active (CD50 = 6.9–9.5 μg cm−3). The nickel, zirconium and chromium complexes were found to be inactive. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
Summary New complexes of general formulae [Ni(HL)2], [ML]·H2O and [Cu(HL)X] (H2L = pyrrole-2-aldehyde Schiff bases ofS-methyl- andS-benzyldithiocarbazates; X = Cl or Br; M = NiII, CuII, ZnII or CdII) were prepared and characterized by a variety of physicochemical techniques. The Schiff bases coordinate as NS bidentate chelating agents in [Ni(HL)2] and [Cu(HL)X], and as tridentate NNS chelates in [ML] (M = NiII, CuII, ZnII or CdII). Both the [Ni(HL)2] and [NiL] complexes are diamagnetic and square-planar. Based on magnetic and spectroscopic evidence, thiolate sulphur-bridged dimeric square-planar structures are assigned to the [Cu(HL)X] and [ML] (M = NiII or CuII) complexes. The complexes ML (M = ZnII or CdII) are polymeric and octahedral.  相似文献   

3.
Summary Metal(II) chelates of Schiff bases derived from the condensation of 1,2,3,5,6,7,8,8a-octahydro-3-oxo-N,1-diphenyl-5-(phenylmethylene)-2-naphthalenecarboxamide with o-aminophenol (KAAP), o-aminothiophenol (KAAT) or o-aminobenzoic acid (KAAB) have been prepared and characterized. The complexes are of the type [M(N2X)]2 for M = CuII and M(NX)2·nH2O for M = NiII, CoII and VOII (X = phenolic oxygen, thiophenolic sulphur or carboxylic oxygen; n = 0 or 2). Conductivity data indicate that the complexes are non-ionic. The Schiff bases behave as dibasic tridentate ligands in their copper(II) complexes and as monobasic bidentate ligands in their nickel(II), cobalt(II) and vanadyl(II) complexes. The subnormal magnetic moments of the copper(II) complexes are ascribed to an antiferromagnetic exchange interaction arising from dimerization. Nickel(II) and cobalt(II) complexes are trans octahedral whereas vanadyl(II) complexes are square pyramidal  相似文献   

4.
Summary FeIII, CoII, NiII and CuII complexes of a new Schiff base, 2-phenyl-1,2,3-triazole-4-carboxalidene-2-aminophenol (PTCAP), have been synthesized and characterized by elemental analyses, molar conductance and magnetic susceptibility measurements, and by u.v.-vis., i.r. and e.p.r. spectral observations. The studies indicate an octahedral structure for the complexes with the general formula [ML2] (M = CoII, NiII or CuII.; L = PTCAP) or [M′(OH)L2] (M′ = FeIII). The i.r. spectra suggest that the ligand acts as a tridentate (NNO) donor towards CoII, NiII and CuII, and, in the FeIII complex, one of the two ligand molecules acts as a bidentate (NO) donor and the other as a tridentate donor. The M?ssbauer spectrum of the FeIII complex suggests the presence of a spin equilibrium at room temperature. Cyclic voltammograms are also recorded for the CuII and FeIII complexes.  相似文献   

5.
Four tridentate ONS ligands, namely 2-hydroxyacetophenonethiosemicarbazone (H2L1), the 2-hydroxyacetophenone Schiff base of S-methyldithiocarbazate (H2L2), the 2-hydroxy-5-nitrobenzaldehyde Schiff base of S-methyldithiocarbazate (H2L3), and the 2-hydroxy-5-nitrobenzaldehyde Schiff base of S-benzyldithiocarbazate (H2L4), and their complexes of general formula [Ni(HL1)2], [ML] (M?=?NiII or CuII; L?=?L1, L2, L3 and L4), [Co(HL)(L); L?=?L1, L2, L3 and L4] and [ML(B)] (M?=?NiII or CuII; L?=?L2 and L4; B?=?py, PPh3) have been prepared and characterized by physico-chemical techniques. Spectroscopic evidence indicates that the Schiff bases behave as ONS tridentate chelating agents. X-ray crystallographic structure determination of [NiL2(PPh3)] and [CuL4(py)] indicates that these complexes have an approximately square-planar structure with the Schiff bases acting as dinegatively charged ONS tridentate ligands coordinating via the phenoxide oxygen, azomethine nitrogen and thiolate sulfur atoms. The electrochemical properties of the complexes have been studied by cyclic voltammetry.  相似文献   

6.
Two tridentate Schiff bases having ONS and NNS donor sequences were prepared by condensing S-benzyldithiocarbazate (NH2NHCSSCH2Ph) (SBDTC) with pyridine-2-carboxaldehyde and salicylaldehyde, respectively. Complexes of these ligands with NiII, ZnII, CrIII, CoII, CuII, and SnII were studied and characterized by elemental analyses and various physico-chemical techniques. NiII, CuII, ZnII and SnII complexes were four-coordinate while the CrIII, SrIII and CoIII complexes were six-coordinate. The ONS Schiff base was moderately active against leukemia, while its zinc, antimony and cobalt complexes were strongly active against leukemic cells with DC50 = 0.35–5.00.  相似文献   

7.
Summary New complexes of the general formulae [MLA(H2O)2]-Cl2 (M=Ni or Cu), [MLAX2] (M=Co or Cu; X=Cl or Br), [NiLABr2]·H2O, [MLA] [MCl4] (M=Pd or Pt), [NiLB(H2O)2]Cl2·2H2O, [MLBCl2] (M=Co, Ni, Cu, Pd or Pt; X=Cl or Br) and [MLB] [MCl4] (M=Pd or Pt), where LA=N,N-ethylenebis(2-acetylpyridine imine) and LB=N, N-ethylenebis(2-benzoylpyridine imine), have been isolated. The complexes were characterized by elemental analyses, conductivity measurements, t.g./d.t.g. methods, magnetic susceptibilities and spectroscopic (i.r., far-i.r., ligand field,1Hn.m.r.) studies. Monomeric pseudo-octahedral stereochemistries for the CoII, NiII and CuII complexes andcis square planar structures for the compounds [MLBX2] (M=Pd or Pt; X=Cl or Br) are assigned in the solid state. The molecules LA and LB behave as tetradentate chelate ligands in the CoII, NiII, CuII and Magnus-type PdII and PtII complexes, bonding through both the pyridine and methine nitrogen atoms. A bidentateN-methine coordination of the Schiff base LB is assigned in the [MLBX2] complexes (M=Pd or Pt; X=Cl or Br). The anomalous magnetic moment values of the CoII complexes are discussed.  相似文献   

8.
Summary New metal complexes [M(NNNS)X] (M = NiII, CuII, ZnII and CdII; NNNS = anion of the quadridentate ligands formed from S-methyl--N-(2-aminophenyl)-methylenedithiocarbazate and pyridine-2-aldehyde or 6-methylpyridine-2-aldehyde; X = Cl, NCS, NO3 or I) and [Co(NNNS)Cl2]·2H2O have been prepared and characterized by elemental analysis and conductance measurements. Magnetic and spectroscopic evidence support a five-coordinate structure for [M(NNNS)X] (M = NiII, CuII, ZnII and CdII; X = Cl, NCS) and a squareplanar structure for [Ni(NNNS)]X (X = NO3 or I). The [Co(NNNS)Cl3]·2H2O complex is low-spin and octahedral. The Schiff bases and some of their metal complexes were tested against three pathogenic fungi, Alternaria alternata, Curvularia geniculata and Fusarium palidoroseum. The metal complexes are less fungitoxic than the free ligands.  相似文献   

9.
New complexes of general empirical formula, [M(NS)2] · nCHCl3 (M = NiII, CuII, PdII or PtII; NS = anionic form of the thiophene-2-aldehyde Schiff bases of S-methyl- and S-benzyldithiocarbazate; n = 0, 1) have been synthesized and characterized by physico-chemical techniques. Magnetic and spectroscopic evidence support a square-planar structure for these complexes. The crystal structures of the [Ni(tasbz)2] and [Cu(tasbz)2] · CHCl3 complexes (tasbz = anionic form of the thiophene-2-aldehyde Schiff base of S-benzyldithiocarbazate) have been determined by X-ray diffraction. Both complexes have a trans-planar structure in which the two Schiff base ligands are coordinated to the metal(II) ion as uninegatively charged bidentate ligands via the thiolate sulfur and the azomethine nitrogen atoms. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
Condensation of 2,6-diacetylpyridine (dap) with S-methyldithiocarbazate (smdtc) in a 1:2 molar ratio yields a bicondensed pentadentate Schiff base (H2dapsme) which reacts with K2MCl4 (M = PdII, PtII) giving stable complexes of empirical formula, [M(dapsme)] · 0.5Me2CO. These complexes have been characterized by a variety of physico-chemical techniques. Condensation of dap with smdtc in a 1:1 molar ratio also yields the bicondensed Schiff base (H2dapsme) as the major product, but a mono-condensed one-armed Schiff base (Hmdapsme) is also obtained as a minor product. The latter reacts with K2PdCl4 in an EtOH–H2O mixture yielding a crystalline complex of empirical formula, [Pd(mdapsme)Cl], the crystal structure of which has been determined by X-ray diffraction. The complex has a distorted square-planar structure in which the ligand is coordinated to the palladium(II) ion as a uninegatively charged tridentate chelating agent via the pyridine nitrogen atom, the azomethine nitrogen atom and the thiolate sulfur atom; the oxygen atom of the acetyl group does not participate in coordination.  相似文献   

11.
Summary TheN-methyl-2-[1-(2-pyridinyl-1-oxide)ethylidene]hydrazinecarbothioamide, HLO4M, has been used to prepare a series of CoIII, NiII and CuII complexes. Species with two deprotonated LO4M ligands, one LO4M and one HLO4M ligand, two HLO4M ligands and one HLO4M ligand with two small anionic ligands have been isolated. The deprotonated LO4M bonds as a tridentate ligandvia theN-oxide oxygen, the imine nitrogen (N1 and the sulphur while the HLO4M ligand coordinates primarily as a bidentate ligandvia only the first two atoms listed above. I.r., electronic, mass and e.s.r. spectra have been used to determine the nature of these complexes. One of the more striking differences between these compounds and those prepared with other thiosemicarbazones of 2-acetylpyridine and 2-acetylpyridineN-oxide is that tetrahedral yellow [Ni(HL)X2] rather than planar brown [NiLX] (X=Cl or Br) solids have been isolated with this ligand. Other differences in the nature of the coordination spheres of the various metal ions occur with this particular ligand when compared to previously studied thiosemicarbazone complexes.NATO Fellow, on leave from Medical Faculty, Istanbul University.  相似文献   

12.
Summary 2-Acetylpyridine N(4)-dihexyl- and N(4)-dicyclohexylthiosemicarbazone, HAc4DHex and HAc4DCHex, respectively, and FeIII, CoII, CoIII, NiII, CuII and ZnII complexes have been prepared and characterized by molar conductivities, magnetic susceptibilities and spectroscopic techniques. For many of the complexes, loss of the N(2)H hydrogen occurs, and the ligands coordinate to the metal centres as NNS monoanionic, tridentate ligands, e.g., [M(NNS)X] (M = CoII, NiII, CuII, NNS = Ac4DHex or Ac4DCHex and X = Cl or Br), [Fe(NNS)2]ClO4, [Co(NNS)2]BF4, [Cu(NNS)NO3] and [Zn(NNS)OAc]. ZnII ion is also chelated by neutral ligands in [Zn(HNNS)X2] (X = Cl, Br). In addition, [Ni(Ac4DHex)-(HAc4DHex)]X (X = BF4, ClO4) and [Ni(HAc4DCHex)2]-(BF4)2 are reported where the neutral thiosemicarbazone is coordinated via the pyridyl nitrogen, azomethine nitrogen and thione sulfur. Crystal structure determinations of HAc4DCHex and [Cu(Ac4DHex)Br] show the former to contain the bifurcated hydrogen bonded form and the latter to be planar with no significant interaction between neighbouring centres.  相似文献   

13.
Complexes of N-phthaloylglycinate (N-phthgly) and CoII, NiII, CuII, ZnII and CdII containing imidazole (imi), N-methylimidazole (mimi), 2,2-bipyridyl (bipy) and 1,10-phenanthroline (phen), and tridentate amines such as 2,2,2-terpyridine (terpy) and 2,4,6-(2-pyridyl)s-triazine (tptz), were prepared and characterized by conventional methods, i.r. spectra and by thermogravimetric analysis. For imi and mimi ternary complexes, the general formula [M(imi/mimi)2(N-phthgly)2nH2O, where M = CoII, NiII, CuII and ZnII applies. For CdII ternary complexes with imi, [Cd(imi)3(N-phthgly)2]·2H2O applies. For the bi and tridentate ligands, ternary complexes of the formula [M(L)(N-phthgly)2nH2O were obtained, where M = CoII, NiII, CuII and ZnII; L = bipy, phen, tptz and terpy. In all complexes, N-phthgly acts as a monodentate ligand, coordinating metal ions through the carboxylate oxygen, except for the ternary complexes of CoII, NiII and CuII with mimi and CuII and ZnII with imi, where the N-phthgly acts as a bidentate ligand, coordinating the metal ions through both carboxylate oxygen atoms.  相似文献   

14.
New bis-chelated ZnII and CdII complexes of empirical formula, [M(mpsme)2] (mpsme=the anionic form of the tridentate ONS donor ligand formed from methylpyruvate and S-methyldithiocarbazate) have been prepared and characterized by conductance, i.r., electronic and n.m.r. spectroscopic techniques. Spectral evidence supports a six-coordinate distorted octahedral structure for these complexes. X-ray crystallographic structural analysis also confirms that, in both the [Zn(mpsme)2] and [Cd(mpsme)2] complexes, the methylpyruvate Schiff base of S-methyldithiocarbazate is coordinated to the metal ions as a uninegatively charged tridentate ONS chelating agent via the carbonyl oxygen atom, the azomethine nitrogen atom and the thiolate sulfur atom. Both complexes are assigned a distorted octahedral geometry in which the ligands are arranged meridionally around the metal ions. The distortion from regular octahedral geometry is attributable to the restricted bite angles of the ligand.  相似文献   

15.
Preparation and properties of the following NiII and CuII complexes of the Schiff base derived from acetophenone and ethylenediamine (BAPE) and also of the mixed NiII and CuII chelates with BAPE and acetylacetone (acac-H) are described: In each case the Schiff base, BAPE, acts as a neutral bidentate ligand. The complexes are characterised by electronic spectra, magnetic susceptibilities, conductivities and elemental analyses. Pseudotetrahedral structure is proposed for M(BAPE)C12, while tetragonal structure for [M(BAPE)(acac)(H2O)2]ClO4 (M = Ni and Cu). The complex [Ni(BAPE) (acac)]ClO4 has been found to be square planar.  相似文献   

16.
Summary Pyridine-4-carboxaldehyde thionicotinoyl hydrazone (4-PTNH) forms 1:1 adducts with metal(II) halides and 1:2 complexes (metal to ligand) with metal(II) thiocyanates. Magnetic and spectral studies indicate polymeric octahedral geometry for M(4-PTNH)X2 (M=CoII or CuII, X=Cl; M=NiII, X=Cl, Br or I), five coordinate geometry for Co(4-PTNH)X2 (X=Br or I) and octahederal geometry for [M(4-PTNH)2(NCS)2] (M=CoII or NiII). I.r. spectral studies show that 4-PTNH acts as a neutral bidentate ligand in all the complexes, the bonding sites being the thione sulphur and azomethine nitrogen.  相似文献   

17.
Asymmetrical macrocyclic complexes of MnII, CoII, NiII, CuII and ZnII have been synthesized by the template process using bis(benzil)ethylenediamine as precursor. Bis(benzil)ethylenediamine reacts with transition metal chlorides and trimethoprim in a 1:1:1 molar ratio in methanol to give several solid metal complexes of the general composition [M(L)X2] (M = MnII, CoII, NiII, CuII and ZnII, L = ligand and X = Cl?). They were characterized by physicochemical and spectroscopic techniques. Based on analytical, spectral and magnetic moments, all the complexes are identified as distorted octahedral structures. All the complexes are of the [M(L)X2] type. The shifts of the ν(CN) (azomethine) stretches have been monitored. To find out the donor sites of the ligands, the activity data show that the metal complexes are more potent than the parent ligand. The [M(L)X2] complexes showed a broad spectrum of antimicrobial activity in vitro against both gram-positive and gram-negative human pathogenic bacterial isolates and the antimicrobial spectrum enhanced only with a combination of metal chlorides and trimethoprim complex. From the results it is imperative that the synthesized macrocyclic [M(L)X2] complexes exhibit potent broad spectrum antibacterial activity.  相似文献   

18.
Summary The Schiff bases RC(OFl)=CFlC(CF3)=NNlJC(S)NH2 (R = 2-thienyl, Ph,p-BrC6H4,p-MeC6H4,p-MeOC6H4,m-McOC6H4, -naphthy], Pri) have been prepared by condensation of fluorinated -diketones with thiosemicarbazide. By the loss of one or two protons from their tautomeric iminothiol form RC(OH)=CHC(CF3)=NN=C(SH)NH2 the Schiff bases act as (i) doubly negatively charged ONS tridentate or (ii) singly negatively charged NS bidentate ligands, respectively. The Schiff bases give dimeric µ2-dithiolo-bridged complexes M(ONS)2 (M = Ni, Pd, and Pt). The thiolo-bridges in the nickel complexes can be split by reaction with pyridine to give the monomeric compounds Ni(ONS)py, whereas the palladium and platinum complexes are unreactive towards pyridine. When R = 2-thienyl orp-BrC6H4, 1:2 complexes of the type M(HONS)2 (M = Pd or Pt) were isolated. With copper(II) the Schiff bases yield the complexes CuII(ONS). CuI(HONS) which are considered to have a polymeric structure involving -thiolo-bridges.  相似文献   

19.
Summary FeIII, CoII, NiII and CuII, complexes of a new Schiff base ligand, prepared by condensing 2-aminocyclopent-1-ene-1-dithiocarboxylic acid with benzaldehyde (ACB), and also CuII and NiII complexes of a second Schiff base ligand prepared by condensing 2-aminocyclopent-1-ene-1-dithiocarboxylic acid with salicylaldehyde (ACS), have been prepared and characterized by elemental analyses, conductivity measurements, magnetic and spectral (electronic, i.r. and e.p.r.) studies. The i.r. spectra suggest that both ACB and ACS are acting as bidentate ligands, coordinating through one of the sulphur atoms and through the azomethine nitrogen atom. The magnetic moment of the FeIII complex indicates spin crossover behaviour. Square planar structures have been assigned to the CuII and NiII complexes and a tetrahedral structure to the CoII complex. The e.p.r. spectra of the CuII complexes suggest a square planar environment with rhombic distortion around the CuII ion.  相似文献   

20.
Summary The preparation of transition metal complexes containing the sterically hindered ligand, bis(3,5-dimethylpyrazolyl)methane (LL) is described. Compounds of formula M(LL)X2 (M = CoII, NiII or ZnII and X = Cl or Br) or M(LL)2X2 (M = MnII, FeII, CoII, NiII, CuII, ZnII or CdII and X = ClO 4 ; M = CoII, NiII, CuII or ZnII and X = NO 3 ; M = NiII or CuII and X = Cl or Br) have been isolated. In addition, an apparently trimeric Cu3(LL)4Cl6 · EtOH compound is reported. For Ni(LL)Cl2 a five-coordinated chloro-bridged dimer is found. The perchlorato compounds, M(LL)2(ClO4)2, appear to have one bidentate ClO 4 and one ionic ClO 4 group. The M(LL)2 species appears to occur either in octahedral geometry, leaving twocis-positions free, or in a tetrahedral geometry without space for other ligands, and probably also in a five-coordinate geometry with one free ligand position.Structural conclusions are drawn from i.r., far-i.r. and ligand-field spectra, x-ray powder patterns, magnetic susceptibility data, e.s.r. spectra and conductivity data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号