首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A study is made of systems of weakly coupled, semilinear, parabolic equations, namely reaction-diffusion systems, subject to the homogeneous Neumann boundary conditions in parametrized nonconvex domains inR 2. It is assumed that the domain approaches a union of two disjoint domains as the parameter varies. Under some conditions the long-time behavior of bounded solutions is discussed and the existence of a finite-dimensional invariant manifold is shown, together with its attractivity. This manifold is represented by a graph of some function defined in a possibly large bounded region of the phase space, and the original system is reduced to an ODE system on it. Since an explicit form of the reduced ODE system is given, its dynamics can be studied in detail, which in turn reveals the global dynamics of the original reaction-diffusion system. One can thereby prove, among other things, the existence of asymptotically stable equilibrium solutions of the original system having large spatial inhomogeneity. The existence and stability of a spatially inhomogeneous periodic solution of large amplitude are also discussed.  相似文献   

2.
This paper is devoted to time-global solutions of the Fisher-KPP equation in ℝ N :
where f is a C 2 concave function on [0,1] such that f(0)=f(1)=0 and f>0 on (0,1). It is well known that this equation admits a finite-dimensional manifold of planar travelling-fronts solutions. By considering the mixing of any density of travelling fronts, we prove the existence of an infinite-dimensional manifold of solutions. In particular, there are infinite-dimensional manifolds of (nonplanar) travelling fronts and radial solutions. Furthermore, up to an additional assumption, a given solution u can be represented in terms of such a mixing of travelling fronts. Accepted October 30, 2000?Published online March 21, 2001  相似文献   

3.
In this article, center-manifold theory is developed for homoclinic solutions of ordinary differential equations or semilinear parabolic equations. A center manifold along a homoclinic solution is a locally invariant manifold containing all solutions which stay close to the homoclinic orbit in phase space for all times. Therefore, as usual, the low-dimensional center manifold contains the interesting recurrent dynamics near the homoclinic orbit, and a considerable reduction of dimension is achieved. The manifold is of class C 1, for some >0. As an application, results of Shilnikov about the occurrence of complicated dynamics near homoclinic solutions approaching saddle-foci equilibria are generalized to semilinear parabolic equations.  相似文献   

4.
We consider internal travelling waves in a perfect stratified fluid, in the singular limit case when smooth stratifications approach a discontinuous two-layer profile. Our analysis concerns two-dimensional waves of small amplitude, propagating in an infinite horizontal strip of finite depth. The problems with smooth or discontinuous stratification are formulated as a unifying spatial evolution problem, where the stratification ρ plays the role of a functional parameter. The vector field is not smooth with respect to ρ, but has some weak continuity. When the Froude number is close to a critical value, we reduce the problem to one on a center manifold in a neighborhood of the trivial state independent of ρ (for the usual topology). Considering a weaker topology, we prove the continuity in ρ of the center manifold. Then the small solutions are described by an ordinary differential equation in ?2, which depends continuously on ρ in the C k norm.  相似文献   

5.
We show the existence of weak solutions to the partial differential equation which describes the motion by R-curvature in R d , by the continuum limit of a class of infinite particle systems. We also show that weak solutions of the partial differential equation are viscosity solutions and give the uniqueness result on both weak and viscosity solutions.  相似文献   

6.
7.
We follow a functional analytic approach to study the problem of chaotic behaviour in time-perturbed discontinuous systems whose unperturbed part has a piecewise C 1 homoclinic solution that crosses transversally the discontinuity manifold. We show that if a certain Melnikov function has a simple zero at some point, then the system has solutions that behave chaotically. Application of this result to quasi periodic systems are also given.  相似文献   

8.
 The Navier-Stokes equation for compressible viscous fluid is considered on the half space in R 3 under the zero-Dirichlet boundary condition for the momentum with initial data near an arbitrarily given equilibrium of positive constant density and zero momentum. Time decay properties in L 2 norms for solutions of the linearized problem are investigated to obtain the rate of convergence in L 2 norms of solutions to the equilibrium when initial data are sufficiently close to the equilibrium in . Some lower bounds are derived for solutions to the linearized problem, one of which indicates a nonlinear phenomenon not appearing in the case of the Cauchy problem on the whole space. (Accepted May 8, 2002) Published online October 18, 2002 Communicated by T.-P. LIU  相似文献   

9.
We consider a constant coefficient coagulation equation with Becker–D?ring type interactions and power law input of monomers J 1(t) = α t ω, with α > 0 and . For this infinite dimensional system we prove solutions converge to similarity profiles as t and j converge to infinity in a similarity way, namely with either or constants, where is a function of t only. This work generalizes to the non-autonomous case a recent result of da Costa et al. (2004). Markov Processes Relat. Fields 12, 367–398. and provides a rigorous derivation of formal results obtained by Wattis J. Phys. A: Math. Gen. 37, 7823–7841. The main part of the approach is the analysis of a bidimensional non-autonomous system obtained through an appropriate change of variables; this is achieved by the use of differential inequalities and qualitative theory methods. The results about rate of convergence of solutions of the bidimensional system thus obtained are fed into an integral formula representation for the solutions of the infinite dimensional system which is then estimated by an adaptation of methods used by da Costa et al. (2004). Markov Processes Relat. Fields 12, 367–398.   相似文献   

10.
IntroductionWiththerapiddevelopmentofscienceandtechnology ,thestudykernelofmodernscienceischangedfromlineartononlinearstepbystep .Manynonlinearscienceproblemscansimplyandexactlybedescribedbyusingthemathematicalmodelofnonlinearequation .Uptonow ,manyimpor…  相似文献   

11.
12.
Summary The Lagrange-Dirichlet theorem states that the equilibrium position of a discrete, conservative mechanical system is stable if the potential energy U(q) assumes a minimum in this position. Although everything seems to indicate that the equilibrium is always unstable in case of a maximum of the potential energy, this has yet to be proven. In all existing instability theorems the function U(q) has to satisfy additional requirements which are very restrictive.In this paper instability is proved in the case of a maximum of U(q)C 2, without further restrictions. The instability follows directly from the existence of certain types of motions which are not found as solutions of differential equations, but as the solutions of a variational problem. Existence theorems are given for the variational problem, based on a result found by Carathéodory.In similar way an inversion of Routh's theorem on the stability of steady motions in systems with cyclic coordinates is also given. The result obtained here is not as general as the inversion of the Lagrange-Dirichlet theorem because the equations of motion are of a more complex type.

Vorgelegt von C. Truesdell

Von der Fakultät für Mathematik der Universität Karlsruhe (TH) angenommene Habilitationsschrift.  相似文献   

13.
We consider reaction diffusion equations of the prototype form u t = u xx + λ u + |u| p-1 u on the interval 0 < x < π, with p > 1 and λ > m 2. We study the global blow-up dynamics in the m-dimensional fast unstable manifold of the trivial equilibrium u ≡ 0. In particular, sign-changing solutions are included. Specifically, we find initial conditions such that the blow-up profile u(t, x) at blow-up time t = T possesses m + 1 intervals of strict monotonicity with prescribed extremal values u 1, . . . ,u m . Since u k = ± ∞ at blow-up time t = T, for some k, this exhausts the dimensional possibilities of trajectories in the m-dimensional fast unstable manifold. Alternatively, we can prescribe the locations x = x 1, . . . ,x m of the extrema, at blow-up time, up to a one-dimensional constraint. The proofs are based on an elementary Brouwer degree argument for maps which encode the shapes of solution profiles via their extremal values and extremal locations, respectively. Even in the linear case, such an “interpolation of shape” was not known to us. Our blow-up result generalizes earlier work by Chen and Matano (1989), J. Diff. Eq. 78, 160–190, and Merle (1992), Commun. Pure Appl. Math. 45(3), 263–300 on multi-point blow-up for positive solutions, which were not constrained to possess global extensions for all negative times. Our results are based on continuity of the blow-up time, as proved by Merle (1992), Commun. Pure Appl. Math. 45(3), 263–300, and Quittner (2003), Houston J. Math. 29(3), 757–799, and on a refined variant of Merle’s continuity of the blow-up profile, as addressed in the companion paper Matano and Fiedler (2007) (in preparation). Dedicated to Palo Brunovsky on the occasion of his birthday.  相似文献   

14.
This paper concerns the regularity of a capillary graph (the meniscus profile of liquid in a cylindrical tube) over a corner domain of angle α. By giving an explicit construction of minimal surface solutions previously shown to exist (Indiana Univ. Math. J. 50 (2001), no. 1, 411–441) we clarify two outstanding questions. Solutions are constructed in the case α = π/2 for contact angle data (γ1, γ2) = (γ, π − γ) with 0 < γ < π. The solutions given with |γ − π/2| < π/4 are the first known solutions that are not C2 up to the corner. This shows that the best known regularity (C1, ∈) is the best possible in some cases. Specific dependence of the H?lder exponent on the contact angle for our examples is given. Solutions with γ = π/4 have continuous, but horizontal, normal vector at the corners in accordance with results of Tam (Pacific J. Math. 124 (1986), 469–482). It is shown that our examples are C0, β up to and including the corner for any β < 1. Solutions with |γ − π/2| > π/4 have a jump discontinuity at the corner. This kind of behavior was suggested by numerical work of Concus and Finn (Microgravity sci. technol. VII/2 (1994), 152–155) and Mittelmann and Zhu (Microgravity sci. technol. IX/1 (1996), 22–27). Our explicit construction, however, allows us to investigate the solutions quantitatively. For example, the trace of these solutions, excluding the jump discontinuity, is C2/3.  相似文献   

15.
A kind of 2-dimensional neural network model with delay is considered. By analyzing the distribution of the roots of the characteristic equation associated with the model, a bifurcation diagram was drawn in an appropriate parameter plane. It is found that a line is a pitchfork bifurcation curve. Further more, the stability of each fixed point and existence of Hopf bifurcation were obtained. Finally, the direction of the Hopf bifurcation and the stability of the bifurcating periodic solutions were determined by using the normal form method and centre manifold theory. Foundation item: the National Natural Science, Foundation of China (19831030) Biography: WEI Jun-jie, Professor, Doctor, E-mail: weijj@hit.edu.cn  相似文献   

16.
In this paper a complex-order van der Pol oscillator is considered. The complex derivative Da±jbD^{\alpha\pm\jmath\beta}, with α,βR + is a generalization of the concept of integer derivative, where α=1, β=0. By applying the concept of complex derivative, we obtain a high-dimensional parameter space. Amplitude and period values of the periodic solutions of the two versions of the complex-order van der Pol oscillator are studied for variation of these parameters. Fourier transforms of the periodic solutions of the two oscillators are also analyzed.  相似文献   

17.
We introduce the definitions of a standard Riemann semigroup and of a viscosity solution for a nonlinear hyperbolic system of conservation laws. For a class including general 2×2 systems, it is proved that the solutions obtained by a wavefront tracking algorithm or by the Glimm scheme are precisely the semigroup trajectories. In particular, these solutions are unique and depend Lipschitz continuously on the initial data in the L 1 norm.  相似文献   

18.
We study uniform stability estimates to the Boltzmann equation for quantum particles such as Bose-Einstein particles and Fermi-Dirac particles. When the small amount of particles expands toward the vacuum, we show that continuous mild solutions are L 1-stable and also satisfy BV-type estimates using a nonlinear functional approach. PACS05.20 Dd  相似文献   

19.
We prove radial symmetry (or axial symmetry) of the mountain pass solution of variational elliptic systems − AΔu(x) + ∇ F(u(x)) = 0 (or − ∇.(A(r) ∇ u(x)) + ∇ F(r,u(x)) = 0,) u(x) = (u 1(x),...,u N (x)), where A (or A(r)) is a symmetric positive definite matrix. The solutions are defined in a domain Ω which can be , a ball, an annulus or the exterior of a ball. The boundary conditions are either Dirichlet or Neumann (or any one which is invariant under rotation). The mountain pass solutions studied here are given by constrained minimization on the Nehari manifold. We prove symmetry using the reflection method introduced in Lopes [(1996), J. Diff. Eq. 124, 378–388; (1996), Eletron. J. Diff. Eq. 3, 1–14].  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号