首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction of the unsymmetrical ligands 1-diphenylphosphino-1'-(phenylsulfanyl)ferrocene and 1-diphenylphosphino-1'-(phenylselenyl)ferrocene, Fc(EPh)PPh2(E = S, Se), with several group 11 metal derivatives leads to the synthesis of complexes of the type [MX{Fc(EPh)PPh2}](M = Au, X = Cl, C6F5; M = Ag, X = OTf), (OTf = trifluoromethanesulfonate), [M{Fc(EPh)PPh2}2]X (M = Au, X = ClO4; M = Ag, X = OTf), [M(PPh3){Fc(EPh)PPh2}]OTf (M = Au, Ag), [Au2{Fc(SPh)PPh2}2](ClO4)2, [Au(C6F5)2{Fc(SePh)PPh2}]ClO4, [Au(C6F5)3{Fc(EPh)PPh2}], [Au2(C6F5)6{Fc(SePh)PPh2}] or [Cu{Fc(EPh)PPh2}2]PF6(E = S, Se). In these complexes coordination depends upon the metal centre; with gold it takes place predominantly to the phosphorus atom and with silver and copper to both phosphorus and chalcogen atoms. The treatment of some of the gold complexes with other metal centres affords heterometallic derivatives that in some cases are in equilibrium with the homometallic derivatives. Several compounds have been characterized by X-ray diffraction, four pairs of homologous compounds, yet not a single pair is isotypic. In many of them a three dimensional network is formed through secondary bonds such as hydrogen bonds, Au...Cl or Au...Se interactions. The complex [Ag(OTf){Fc(SePh)PPh2}] forms one-dimensional chains through trifluoromethanesulfonate bridging ligands.  相似文献   

2.
A series of homodinuclear platinum(II) complexes containing bridging chalcogenido ligands, [Pt(2)(mu-E)(2)(P empty set N)(4)] (P empty set N=dppy, E=S (1), Se (2); P empty set N=tBu-dppy, E=S (3)) (dppy=2-(diphenylphosphino)pyridine, tBu-dppy=4-tert-butyl-2-(diphenylphosphino)pyridine) have been synthesized and characterized. The nucleophilicity of the [Pt(2)E(2)] unit towards a number of d(10) metal ions and complexes has been demonstrated through the successful isolation of a number of novel heteropolynuclear platinum(II)-copper(I), -silver(I), and -gold(I) complexes: [[Pt(2)(mu(3)-E)(2)(dppy)(4)](2)Ag(3)](PF(6))(3) (E=S (4); Se (5)) and [Pt(2)(dppy)(4)(mu(3)-E)(2)M(2)(dppm)]X(2) (E=S, M=Ag, X=BF(4) (6); E=S, M=Cu, X=PF(6) (7); E=S, M=Au, X=PF(6) (8); E=Se, M=Ag, X=PF(6) (9); E=Se, M=Au, X=PF(6) (10)). Some of them display short metal.metal contacts. These complexes have been found to possess interesting luminescence properties. Through systematic comparison studies, the emission origin has been probed.  相似文献   

3.
Density-functional theory (DFT) calculations have been carried out to investigate the chalcogenophilicity of mercury (Hg) reported recently [J. Am. Chem. Soc. 2010, 132, 647-655]. Molecules of different sizes have been studied including ME, [M(EH)(4)](n), M(SH)(3)EH (M = Cd, Hg; E = S, Se, Te; n = 0, 2+) and [Tm(Y)]MEZ complexes (Tm = tris(2-mercapto-1-R-imidzolyl)hydroborato; Y = H, Me, Bu(t); M = Zn, Cd, Hg; E = S, Se, Te; Z = H, Ph). The bonding of Cd and Hg in their complexes depends on the oxidation state of the metal and nature of the ligands. More electronegative ligands form bonds of ionic type with Cd and Hg while less electronegative ligands form bonds that are more covalent. The Cd-ligand bond distances are shorter for the ionic type of bonding and longer for the covalent type of bonding than those of the corresponding Hg-ligand bonds. The variation of this Cd/Hg bonding is in accordance with the ionic and covalent radii of Cd and Hg. The experimentally observed (shorter) Hg-Se and Hg-Te bond distances in [Tm(Bu(t))]HgEPh (E = S, Se, Te) are due to the lower electronegativity of Se and Te, crystal packing, and the presence of a very bulky group. The bond dissociation energy (BDE) for Hg is the highest for Hg-S followed by Hg-Se and Hg-Te regardless of complex type.  相似文献   

4.
The ligands o-C(6)H(4)(CH(2)EMe)(2) (E = S or Se) have been prepared and characterised spectroscopically. A systematic study of the coordination chemistry of these, together with the telluroether analogue, o-C(6)H(4)(CH(2)TeMe)(2), with late transition metal centers has been undertaken. The planar complexes [MCl(2){o-C(6)H(4)(CH(2)SMe)(2)}] and [M{o-C(6)H(4)(CH(2)EMe)(2)}(2)](PF(6))(2) (M = Pd or Pt; E = S or Se), the distorted octahedral [RhCl(2){o-C(6)H(4)(CH(2)EMe)(2)}(2)]Y (E = S or Se: Y = PF(6); E = Te: Y = Cl) and [RuCl(2){o-C(6)H(4)(CH(2)EMe)(2)}(2)] (E = S, Se or Te), the dithioether-bridged binuclear [{RuCl(2)(p-cymene)}(2){micro-o-C(6)H(4)(CH(2)SMe)(2)}] and the tetrahedral [M'{o-C(6)H(4)(CH(2)EMe)(2)}(2)]BF(4) (M' = Cu or Ag; E = S, Se or Te) have been obtained and characterised by IR and multinuclear NMR spectroscopy ((1)H, (63)Cu, (77)Se{(1)H}, (125)Te{(1)H} and (195)Pt), electrospray MS and microanalyses. Crystal structures of the parent o-C(6)H(4)(CH(2)SMe)(2) and seven complexes are described, which show three different stereoisomeric forms for the chelated ligands, as well as the first example of a bridging coordination mode in [{RuCl(2)(p-cymene)}(2){micro-o-C(6)H(4)(CH(2)SMe)(2)}]. These studies reveal the consequences of the sterically demanding o-xylyl backbone, which typically leads to unusually obtuse E-M-E chelate angles of approximately 100 degrees .  相似文献   

5.
Using the Voronoi–Dirichlet partition procedure and the method of intersecting spheres, it is demonstrated that in the crystal structures of chalcogen-containing compounds, Pt(IV) atoms form only PtX6 octahedra (X = S, Se, Te), whereas in the case of Pt(III) and Pt(II), square coordination by X atoms is typical. The Pt(II) atoms can also form PtX5 square pyramids (X = S, Se), PtS6 octahedra, and PtTe3Pt3 quasi-octahedra in which a platinum atom is located in the trans-position to each coordinated tellurium atom. It was found that Pt(II) atoms in the PtX4 squares (X = S, Se), unlike square-coordinated Pt(III) atoms, can form one or two Pt–M bonds (M is a d metal) and 1 to 4 secondary Pt–Q bonds, where Q is an s metal or hydrogen. The main features of platinum stereochemistry depending on the metal valence state and coordination number (CN) and on the nature of the chalcogen atom were quantitatively characterized in terms of the Voronoi–Dirichlet polyhedra.  相似文献   

6.
Interaction of the lacunary [alpha-XW9O33](9-) (X = As(III), Sb(III)) with Cu(2+) and Zn(2+) ions in neutral, aqueous medium leads to the formation of dimeric polyoxoanions, [(alpha-XW9O33)2M3(H2O)3](12-) (M = Cu(2+), Zn(2+); X = As(III), Sb(III)), in high yield. The selenium and tellurium analogues of the copper-containing heteropolyanions are also reported: [(alpha-XW9O33)2Cu3(H2O)3](10-) (X = Se(IV), Te(IV)). The polyanions consist of two [alpha-XW9O33] units joined by three equivalent Cu(2+) (X = As, Sb, Se, Te) or Zn(2+) (X = As, Sb) ions. All copper and zinc ions have one terminal water molecule resulting in square-pyramidal coordination geometry. Therefore, the title anions have idealized D3h symmetry. The space between the three transition metal ions is occupied by three sodium ions (M = Cu(2+), Zn(2+); X = As(III), Sb(III)) or potassium ions (M = Cu(2+); X = Se(IV), Te(IV)) leading to a central belt of six metal atoms alternating in position. Reaction of [alpha-AsW9O33](9-) with Zn(2+), Co(2+), and Mn(2+) ions in acidic medium (pH = 4-5) results in the same structural type but with a lower degree of transition-metal substitution, [(alpha-AsW9O33)2WO(H2O)M2(H2O)2](10-) (M = Zn(2+), Co(2+), Mn(2+)). All nine compounds are characterized by single-crystal X-ray diffraction, IR spectroscopy, and elemental analysis. The solution properties of [(alpha-XW9O33)2Zn3(H2O)3](12-) (X = As(III), Sb(III)) were also studied by 183W-NMR spectroscopy.  相似文献   

7.
本文用EHMO法对[Fe_4X_4(SPh)_4]~(3-)和(Fe_4X_4(NO)_4](X=S、Se、Te)等六个类立方烷型簇合物的电子结构进行了计算,并分析讨论了桥基改变对这些类立方烷电子结构和成键特征的影响。结果表明,桥基S被Se、Te取代后前线区域分子轨道中桥基成份明显增大,能级普遍升高;Fe—X键强度减弱,Fe—Fe间作用稍有增强;能级间隔△E(LUMO—HOMO)则随端基配体类型的不同而增大或减少。  相似文献   

8.
本文用EHMO法对(Mo_4X_4Cp′4](X=0,S,Se,Tc)四个类立方烷型簇合物的电子结构进行了计算,结果表明,桥基X从O到Te,前线区域分子轨道中桥基成分明显增加,能级普遍升高;Mo-Mo间作用有所增强;能隙ΔE(LUMO-HOMO)增大;Mulliken键级P的次序为P_(Mo-Se)>P_(Mo-S)>P_(Mo-Tc)>P_(Mo-o)>P_(Mo-Mo),说明第二过渡系元素Mo更倾向于与较重的se桥结合形成类立方烷型簇合物。  相似文献   

9.
Heterasumanenes 4 – 6 containing chalcogen (S, Se, and Te) and phosphorus atoms have been synthesized in a one‐pot reaction from trichalcogenasumanenes 1 – 3 by replacing one chalcogen atom with a P=S unit. The P=S unit makes 4 – 6 almost planar and shrinks the HOMO–LUMO gap as compared to 1 – 3 . The bonding between Ag+ and S atom on P=S brings about a distinct change to the optical properties of 4 – 6 ; 4 in particular shows a selective fluorescence response toward Ag+ with LOD of 0.21 μm . Compounds 4 – 6 form complexes with AgNO3 to be ( 4 )2?AgNO3, ( 5 )2?AgNO3, and ( 6 )2?(AgNO3)3. In complexes, the coordination between Ag+ and P=S is observed, which leads to shrinkage of C?P and C?X (X=S, Se, Te) bond lengths. As a result, 4 , 5 , and 6 are all bowl‐shaped in complexes with bowl‐depths reaching to 0.66 Å, 0.42 Å, and 0.40 Å, respectively. There are Ag?Te dative bonds between Ag+ and Te atom on telluorophene in ( 6 )2?(AgNO3)3.  相似文献   

10.
Heterasumanenes 4 – 6 containing chalcogen (S, Se, and Te) and phosphorus atoms have been synthesized in a one‐pot reaction from trichalcogenasumanenes 1 – 3 by replacing one chalcogen atom with a P=S unit. The P=S unit makes 4 – 6 almost planar and shrinks the HOMO–LUMO gap as compared to 1 – 3 . The bonding between Ag+ and S atom on P=S brings about a distinct change to the optical properties of 4 – 6 ; 4 in particular shows a selective fluorescence response toward Ag+ with LOD of 0.21 μm . Compounds 4 – 6 form complexes with AgNO3 to be ( 4 )2?AgNO3, ( 5 )2?AgNO3, and ( 6 )2?(AgNO3)3. In complexes, the coordination between Ag+ and P=S is observed, which leads to shrinkage of C?P and C?X (X=S, Se, Te) bond lengths. As a result, 4 , 5 , and 6 are all bowl‐shaped in complexes with bowl‐depths reaching to 0.66 Å, 0.42 Å, and 0.40 Å, respectively. There are Ag?Te dative bonds between Ag+ and Te atom on telluorophene in ( 6 )2?(AgNO3)3.  相似文献   

11.
To understand the intermolecular interactions between chalcogen centers (O, S, Se, Te), quantum chemical calculations on model systems were carried out. These model systems were pairs of monomers of the composition (CH3)2X1 (X1 = O, S, Se, Te) as the donors and CH3X2Z (with X2 = O, S, Se, Te and Z = Me, CN) as the acceptors. The variation of X1, X2, and Z leads to 32 pairs with 8 homonuclear cases (X1 = X2 = O, S, Se, Te) and 24 heteronuclear cases (X1 not equal X2). The MP2/SDB-cc-pVTZ, 6-311G* level of theory was used to derive the geometrical parameters and the interaction energies of the model systems. The pairs with Z = CN (17-32) show a considerably higher interaction energy than the pairs with CH3 groups only (1-16). Natural bond orbital (NBO) analysis revealed that the interaction of the dimers 1, 2, 5, 6, 9, 10, 13, 14, 17, 21, 25, and 29 is mainly due to weak hydrogen bonding between methyl groups and chalcogen centers. These systems all contain hard chalcogen atoms as acceptors. For all other systems, the chalcogen-chalcogen interaction dominates. The one-electron picture of an interaction between the lone pair of the donor chalcogen atom and the chalcogen-carbon antibonding sigma* orbital serves as a model to qualitatively rationalize trends found in many of these systems. However, it has to be applied with some amount of skepticism. A detailed analysis based on symmetry-adapted perturbation theory (SAPT) reveals that induction and dispersion forces dominate and contribute to the bonding in each case. Hydrogen-bonded compounds involve bonding electrostatic contributions. Compounds dominated by chalcogen-chalcogen interactions exhibit bonding due to electrostatic interactions only if one of the chalcogen atoms involved is sulfur or oxygen.  相似文献   

12.
A series of selenium and tellurium bis(carbodithioates and carbothioates) were synthesized. X-Ray structure analysis revealed that Se(SSCC(6)H(4)OMe-2)(2), Te(SSCC(6)H(4)OMe-2)(2) and Te(SSCC(6)H(4)Me-4)(2) have trapezoidal-planar configuration of ES(4) (E = Se, Te) and despite the larger atomic radii, the C=S···Te distances in Te(SSCC(6)H(4)OMe-2)(2) are comparable to those in the corresponding selenium derivatives Se(SSCC(6)H(4)OMe-2)(2). Molecular-orbital calculations performed on compounds E(E'SCR)(2) (E = S, Se, Te; E' = O, S; R = Me, Ph, C(6)H(4)OMe-2) showed that the syn-conformers of Se(SSCR)(2) and Te(SSCR)(2) are more stable than the corresponding anti-ones, while, in the case of carbothioic acid derivatives, E(SOCR)(2) showed that their anti-conformers are all more stable than the corresponding syn-ones. Natural bond orbital (NBO) analyses of these dithio-compounds revealed that two types of orbital interactions, n(S(1))→σ*(E-S(2)) and n(O)→σ*(E-S(2)), play a role in the bonding of E[S(2)S(1)CC(6)H(4)OMe-2](2) (E = Se, Te) and the former play a particularly predominant role.  相似文献   

13.
A general, one-pot, single-step method for producing colloidal silver chalcogenide (Ag(2)E; E = Se, S, Te) nanocrystals is presented, with an emphasis on Ag(2)Se. The method avoids exotic chemicals, high temperatures, and high pressures and requires only a few minutes of reaction time. While Ag(2)S and Ag(2)Te are formed in their low-temperature monoclinic phases, Ag(2)Se is obtained in a metastable tetragonal phase not observed in the bulk.  相似文献   

14.
蔡淑惠  李隽 《结构化学》1993,12(3):192-196
固相过渡金属原子簇化合物Nb_3X_4(X=S,Se,Te)在低温下出现超导行为,且从S到Te,Nb_3X_4的超导转变温度Tc呈下降趋势。本文采用EHT近似下的紧束缚能带方法,计算了Nb_3X_4的能带结构。讨论其电子结构与超导电性的关系,并从化学键的观点出发对其Tc的递变加以解释。此外,本文还给出了Nb金属晶体的能带结构。  相似文献   

15.
The reactions of [AuClL] with Ag(2)O, where L represents the heterofunctional ligands PPh(2)py and PPh(2)CH(2)CH(2)py, give the trigoldoxonium complexes [O(AuL)(3)]BF(4). Treatment of these compounds with thio- or selenourea affords the triply bridging sulfide or selenide derivatives [E(AuL)(3)]BF(4) (E=S, Se). These trinuclear species react with Ag(OTf) or [Cu(NCMe)(4)]PF(6) to give different results, depending on the phosphine and the metal. The reactions of [E(AuPPh(2)py)(3)]BF(4) with silver or copper salts give [E(AuPPh(2)py)(3)M](2+) (E=O, S, Se; M=Ag, Cu) clusters that are highly luminescent. The silver complexes consist of tetrahedral Au(3)Ag clusters further bonded to another unit through aurophilic interactions, whereas in the copper species two coordination isomers with different metallophilic interactions were found. The first is analogous to the silver complexes and in the second, two [S(AuPPh(2)py)(3)](+) units bridge two copper atoms through one pyridine group in each unit. The reactions of [E(AuPPh(2)CH(2)CH(2)py)(3)]BF(4) with silver and copper salts give complexes with [E(AuPPh(2)CH(2)CH(2)py)(3)M](2+) stoichiometry (E=O, S, Se; M=Ag, Cu) with the metal bonded to the three nitrogen atoms in the absence of AuM interactions. The luminescence of these clusters has been studied by varying the chalcogenide, the heterofunctional ligand, and the metal.  相似文献   

16.
Structures of New SeII and TeII Complexes Containing 2,2-Dicyanethylene-1,1-dithiolate, 2,2-Dicyanethylene-1,1-thioselenolate, and 2,2-Dicyanethylene-1,1-diselenolate (NBu4)2{Se[S2C?C(CN)2]2} ( I ), (AsPh4)2 · {Te[SSeC?C(CN)2]2} ( II ), and (NBu4)2{Te[Se2C?C(CN)2]2} ( III ) containing the bidentate chelate ligands 2,2-dicyanethylene-1,1-dithiolate i-mnt , 2,2-dicyanethylene-1,1-thioselenolate i-mnts , and 2,2-dicyanethylene-1,1-diselenolate i-mns have been prepared and characterized by X-ray structure analysis. The central units consist of [M(X? X)2E2]2? (M = Se, Te; X? X = ligand; E = lone-pair) with fourfold coordinated SeII and TeII, respectively. The complex anions [Se(i-mnt)2E2]2? as well as [Te(i-mnts)2E2]2? show a trapezoide distortion with d(Se? S) = 2.276(5); 2.287(5); 2.803(5); 2.789(5) Å and d(Te? Se) = 2.611(2); 2.617(3); d(Te? S) = 2.889(5); 2.935(4) Å. In III there are centrosymmetric complex anions [Te(i-mns)2E2]2? with nearly identical Te? Se-bond-lengths: 2.674(3) and 2.692(2) Å. These Te? Se bonds are elongated compared to usual Te? Se bonds.  相似文献   

17.
《Polyhedron》1987,6(6):1491-1495
The fast atom bombardment mass spectra of a series of ionic compounds of formula [(triphos)M(η3-E2X)]Y (triphos = 1,1,1-tris(diphenylphosphinomethyl)ethane; M = Ni, E = X = P, Y = BF4 or PF6; M = Co, E = P, X = S or Se; E = As, X = S, Se or Te; Y = BF4) are reported. The cations contain a homo- or hetero-atomic trimembered inorganic ring trihapto bonded to a metal-triphos unit. Both in glycerol and thioglycerol the complexes exhibit a characteristic fragmentation which involves the stepwise loss of the three atoms of the inorganic ring and the ejection of organic radicals from the triphos ligand. Adduct ions with sulphur atoms or sulphur organic radicals are, furthermore, observed in thioglycerol. Such adducts infer interactions of the matrix with: (a) the atoms of the inorganic ring of the complex cations, and (b) the metal atom of the (triphos)M moiety.  相似文献   

18.
The electronic band structures for AgGaX(2) (X=S, Se, Te) chalcopyrites have been calculated using a pseudopotential total energy method. First-principles calculations of the linear and nonlinear optical properties are presented for these crystals, with the electronic band structures obtained from pseudopotential method as input. The theoretical refractive indices and nonlinear optical coefficients are in good agreement with available experimental values. The origin of the nonlinear optical effects is explained through real-space atom-cutting analysis. The contribution of the GaX(2) group (X=S, Se, Te) for second harmonic generation (SHG) effect is dominant while that of the cation Ag is negligible. In addition, the percentage contribution to the SHG coefficients from the different bonds increase with increase of the bond order.  相似文献   

19.
The reaction of K(2)Sn(2)Q(5) (Q = S, Se, Te) with stoichiometric amounts of alkyl-ammonium bromides R(4)NBr (R = methyl or ethyl) in ethylenediamine (en) afforded the corresponding salts (R(4)N)(4)[Sn(4)Q(10)] (Q = S, Se, Te) in high yield. Although the compound K(2)Sn(2)Te(5) is not known, this reaction is also applicable to solids with a nominal composition "K(2)Sn(2)Te(5)" which in the presence of R(4)NBr in en are quantitatively converted to the salts (R(4)N)(4)[Sn(4)Te(10)] on a multigram scale. These salts contain the molecular adamantane clusters [Sn(4)Q(10)](4-) and can serve as soluble precursors in simple metathesis reactions with transition metal salts to synthesize the large family of open-framework compounds (Me(4)N)(2)M[Sn(4)Se(10)] (M = Mn(2+), Fe(2+), Co(2+), Zn(2+)). Full structural characterization of these materials as well as their magnetic and optical properties is reported. Depending on the transition metal in (Me(4)N)(2)M[Sn(4)Se(10)], the energy band gaps of these compounds lie in the range of 1.27-2.23 eV. (Me(4)N)(2)Mn[Ge(4)Te(10)] is the first telluride analogue to be reported in this family. This material is a narrow band gap semiconductor with an optical absorption energy of 0.69 eV. Ab initio electronic band structure calculations validate the semiconductor nature of these chalcogenides and indicate a nearly direct band gap.  相似文献   

20.
An outstanding example of structural diversity and complexity is found in the compounds with the general formula ABi(3)Q(5) (A = alkali metal; Q = chalcogen). gamma-RbBi(3)S(5) (I), alpha-RbBi(3)Se(5) (II), beta-RbBi(3)Se(5) (III), gamma-RbBi(3)Se(5) (IV), CsBi(3)Se(5) (V), RbBi(3)Se(4)Te (VI), and RbBi(3)Se(3)Te(2) (VII) were synthesized from A(2)Q (A = Rb, Cs; Q = S, Se) and Bi(2)Q(3) (Q = S, Se or Te) at temperatures above 650 degrees C using appropriate reaction protocols. gamma-RbBi(3)S(5) and alpha-RbBi(3)Se(5) have three-dimensional tunnel structures while the rest of the compounds have lamellar structures. gamma-RbBi(3)S(5), gamma-RbBi(3)Se(5), and its isostructural analogues RbBi(3)Se(4)Te and RbBi(3)Se(3)Te(2) crystallize in the orthorhombic space group Pnma with a = 11.744(2) A, b = 4.0519(5) A, c = 21.081(3) A, R1 = 2.9%, wR2 = 6.3% for (I), a = 21.956(7) A, b = 4.136(2) A, c = 12.357(4) A, R1 = 6.2%, wR2 = 13.5% for (IV), and a = 22.018(3) A, b = 4.2217(6) A, c = 12.614(2) A, R1 = 6.2%, wR2 = 10.3% for (VI). gamma-RbBi(3)S(5) has a three-dimensional tunnel structure that differs from the Se analogues. alpha-RbBi(3)Se(5) crystallizes in the monoclinic space group C2/m with a = 36.779(4) A, b = 4.1480(5) A, c = 25.363(3) A, beta = 120.403(2) degrees, R1 = 4.9%, wR2 = 9.9%. beta-RbBi(3)Se(5) and isostructural CsBi(3)Se(5) adopt the space group P2(1)/m with a = 13.537(2) A, b = 4.1431(6) A, c = 21.545(3) A, beta = 91.297(3) degrees, R1 = 4.9%, wR2 = 11.0% for (III) and a = 13.603(3) A, b = 4.1502(8) A, c = 21.639(4) A, beta = 91.435(3) degrees, R1 = 6.1%, wR2 = 13.4% for (V). alpha-RbBi(3)Se(5) is also three-dimensional, whereas beta-RbBi(3)Se(5) and CsBi(3)Se(5) have stepped layers with alkali metal ions found disordered in several trigonal prismatic sites between the layers. In gamma-RbBi(3)Se(5) and RbBi(3)Se(4)Te, the layers consist of Bi(2)Te(3)-type fragments, which are connected in a stepwise manner. In the mixed Se/Te analogue, the Te occupies the chalcogen sites that are on the "surface" of the layers. All compounds are narrow band-gap semiconductors with optical band gaps ranging 0.4-1.0 eV. The thermal stability of all phases was studied, and it was determined that gamma-RbBi(3)Se(5) is more stable than the and alpha- and beta-forms. Electronic band calculations at the density functional theory (DFT) level performed on alpha-, beta-, and gamma-RbBi(3)Se(5) support the presence of indirect band gaps and were used to assess their relative thermodynamic stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号